Metamath Proof Explorer


Theorem ssdomg

Description: A set dominates its subsets. Theorem 16 of Suppes p. 94. (Contributed by NM, 19-Jun-1998) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ssdomg B V A B A B

Proof

Step Hyp Ref Expression
1 ssexg A B B V A V
2 simpr A B B V B V
3 f1oi I A : A 1-1 onto A
4 dff1o3 I A : A 1-1 onto A I A : A onto A Fun I A -1
5 3 4 mpbi I A : A onto A Fun I A -1
6 5 simpli I A : A onto A
7 fof I A : A onto A I A : A A
8 6 7 ax-mp I A : A A
9 fss I A : A A A B I A : A B
10 8 9 mpan A B I A : A B
11 funi Fun I
12 cnvi I -1 = I
13 12 funeqi Fun I -1 Fun I
14 11 13 mpbir Fun I -1
15 funres11 Fun I -1 Fun I A -1
16 14 15 ax-mp Fun I A -1
17 df-f1 I A : A 1-1 B I A : A B Fun I A -1
18 10 16 17 sylanblrc A B I A : A 1-1 B
19 18 adantr A B B V I A : A 1-1 B
20 f1dom2g A V B V I A : A 1-1 B A B
21 1 2 19 20 syl3anc A B B V A B
22 21 expcom B V A B A B