Metamath Proof Explorer


Theorem sseliALT

Description: Alternate proof of sseli illustrating the use of the weak deduction theorem to prove it from the inference sselii . (Contributed by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sseliALT.1 A B
Assertion sseliALT C A C B

Proof

Step Hyp Ref Expression
1 sseliALT.1 A B
2 biidd A = if C A A C B C B
3 eleq2 B = if C A B C B C if C A B
4 eleq1 C = if C A C C if C A B if C A C if C A B
5 sseq1 A = if C A A A B if C A A B
6 sseq2 B = if C A B if C A A B if C A A if C A B
7 biidd C = if C A C if C A A if C A B if C A A if C A B
8 sseq1 = if C A A if C A A
9 sseq2 = if C A B if C A A if C A A if C A B
10 biidd = if C A C if C A A if C A B if C A A if C A B
11 ssid
12 5 6 7 8 9 10 1 11 keephyp3v if C A A if C A B
13 eleq2 A = if C A A C A C if C A A
14 biidd B = if C A B C if C A A C if C A A
15 eleq1 C = if C A C C if C A A if C A C if C A A
16 eleq2 = if C A A if C A A
17 biidd = if C A B if C A A if C A A
18 eleq1 = if C A C if C A A if C A C if C A A
19 0ex V
20 19 snid
21 13 14 15 16 17 18 20 elimhyp3v if C A C if C A A
22 12 21 sselii if C A C if C A B
23 2 3 4 22 dedth3v C A C B