Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sselid
Next ⟩
sseldi
Metamath Proof Explorer
Ascii
Unicode
Theorem
sselid
Description:
Membership inference from subclass relationship.
(Contributed by
NM
, 25-Jun-2014)
Ref
Expression
Hypotheses
sseli.1
⊢
A
⊆
B
sselid.2
⊢
φ
→
C
∈
A
Assertion
sselid
⊢
φ
→
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
sseli.1
⊢
A
⊆
B
2
sselid.2
⊢
φ
→
C
∈
A
3
1
sseli
⊢
C
∈
A
→
C
∈
B
4
2
3
syl
⊢
φ
→
C
∈
B