Metamath Proof Explorer


Theorem sselid

Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014)

Ref Expression
Hypotheses sseli.1 A B
sselid.2 φ C A
Assertion sselid φ C B

Proof

Step Hyp Ref Expression
1 sseli.1 A B
2 sselid.2 φ C A
3 1 sseli C A C B
4 2 3 syl φ C B