Metamath Proof Explorer


Theorem sseq12d

Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999)

Ref Expression
Hypotheses sseq1d.1 φ A = B
sseq12d.2 φ C = D
Assertion sseq12d φ A C B D

Proof

Step Hyp Ref Expression
1 sseq1d.1 φ A = B
2 sseq12d.2 φ C = D
3 1 sseq1d φ A C B C
4 2 sseq2d φ B C B D
5 3 4 bitrd φ A C B D