Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sseq12d
Next ⟩
eqsstrd
Metamath Proof Explorer
Ascii
Unicode
Theorem
sseq12d
Description:
An equality deduction for the subclass relationship.
(Contributed by
NM
, 31-May-1999)
Ref
Expression
Hypotheses
sseq1d.1
⊢
φ
→
A
=
B
sseq12d.2
⊢
φ
→
C
=
D
Assertion
sseq12d
⊢
φ
→
A
⊆
C
↔
B
⊆
D
Proof
Step
Hyp
Ref
Expression
1
sseq1d.1
⊢
φ
→
A
=
B
2
sseq12d.2
⊢
φ
→
C
=
D
3
1
sseq1d
⊢
φ
→
A
⊆
C
↔
B
⊆
C
4
2
sseq2d
⊢
φ
→
B
⊆
C
↔
B
⊆
D
5
3
4
bitrd
⊢
φ
→
A
⊆
C
↔
B
⊆
D