Metamath Proof Explorer


Theorem sseq12i

Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999) (Proof shortened by Eric Schmidt, 26-Jan-2007)

Ref Expression
Hypotheses sseq1i.1 A = B
sseq12i.2 C = D
Assertion sseq12i A C B D

Proof

Step Hyp Ref Expression
1 sseq1i.1 A = B
2 sseq12i.2 C = D
3 sseq12 A = B C = D A C B D
4 1 2 3 mp2an A C B D