Metamath Proof Explorer


Theorem sseq1i

Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis sseq1i.1 A = B
Assertion sseq1i A C B C

Proof

Step Hyp Ref Expression
1 sseq1i.1 A = B
2 sseq1 A = B A C B C
3 1 2 ax-mp A C B C