Metamath Proof Explorer


Theorem sseq2

Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998)

Ref Expression
Assertion sseq2 A = B C A C B

Proof

Step Hyp Ref Expression
1 eqss A = B A B B A
2 sstr2 C A A B C B
3 2 com12 A B C A C B
4 sstr2 C B B A C A
5 4 com12 B A C B C A
6 3 5 anbiim A B B A C A C B
7 1 6 sylbi A = B C A C B