Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sseq2i
Next ⟩
sseq12i
Metamath Proof Explorer
Ascii
Unicode
Theorem
sseq2i
Description:
An equality inference for the subclass relationship.
(Contributed by
NM
, 30-Aug-1993)
Ref
Expression
Hypothesis
sseq1i.1
⊢
A
=
B
Assertion
sseq2i
⊢
C
⊆
A
↔
C
⊆
B
Proof
Step
Hyp
Ref
Expression
1
sseq1i.1
⊢
A
=
B
2
sseq2
⊢
A
=
B
→
C
⊆
A
↔
C
⊆
B
3
1
2
ax-mp
⊢
C
⊆
A
↔
C
⊆
B