Metamath Proof Explorer


Theorem sseqtri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995)

Ref Expression
Hypotheses sseqtr.1 A B
sseqtr.2 B = C
Assertion sseqtri A C

Proof

Step Hyp Ref Expression
1 sseqtr.1 A B
2 sseqtr.2 B = C
3 2 sseq2i A B A C
4 1 3 mpbi A C