Metamath Proof Explorer
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
sseqtrid.1 |
|
|
|
sseqtrid.2 |
|
|
Assertion |
sseqtrid |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sseqtrid.1 |
|
2 |
|
sseqtrid.2 |
|
3 |
|
sseq2 |
|
4 |
3
|
biimpa |
|
5 |
2 1 4
|
sylancl |
|