Metamath Proof Explorer


Theorem sseqtrrdi

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrrdi.1 φ A B
sseqtrrdi.2 C = B
Assertion sseqtrrdi φ A C

Proof

Step Hyp Ref Expression
1 sseqtrrdi.1 φ A B
2 sseqtrrdi.2 C = B
3 2 eqcomi B = C
4 1 3 sseqtrdi φ A C