Metamath Proof Explorer


Theorem ssfg

Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion ssfg F fBas X F X filGen F

Proof

Step Hyp Ref Expression
1 fbelss F fBas X t F t X
2 1 ex F fBas X t F t X
3 ssid t t
4 sseq1 x = t x t t t
5 4 rspcev t F t t x F x t
6 3 5 mpan2 t F x F x t
7 2 6 jca2 F fBas X t F t X x F x t
8 elfg F fBas X t X filGen F t X x F x t
9 7 8 sylibrd F fBas X t F t X filGen F
10 9 ssrdv F fBas X F X filGen F