Metamath Proof Explorer
Description: A subset of a finite set is finite, deduction version of ssfi .
(Contributed by Glauco Siliprandi, 21-Nov-2020)
|
|
Ref |
Expression |
|
Hypotheses |
ssfid.1 |
|
|
|
ssfid.2 |
|
|
Assertion |
ssfid |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssfid.1 |
|
2 |
|
ssfid.2 |
|
3 |
|
ssfi |
|
4 |
1 2 3
|
syl2anc |
|