Metamath Proof Explorer


Theorem ssfii

Description: Any element of a set A is the intersection of a finite subset of A . (Contributed by FL, 27-Apr-2008) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion ssfii A V A fi A

Proof

Step Hyp Ref Expression
1 vex x V
2 1 intsn x = x
3 simpl A V x A A V
4 simpr A V x A x A
5 4 snssd A V x A x A
6 1 snnz x
7 6 a1i A V x A x
8 snfi x Fin
9 8 a1i A V x A x Fin
10 elfir A V x A x x Fin x fi A
11 3 5 7 9 10 syl13anc A V x A x fi A
12 2 11 eqeltrrid A V x A x fi A
13 12 ex A V x A x fi A
14 13 ssrdv A V A fi A