Metamath Proof Explorer


Theorem ssfin2

Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion ssfin2 A FinII B A B FinII

Proof

Step Hyp Ref Expression
1 simpll A FinII B A x 𝒫 𝒫 B A FinII
2 elpwi x 𝒫 𝒫 B x 𝒫 B
3 2 adantl A FinII B A x 𝒫 𝒫 B x 𝒫 B
4 simplr A FinII B A x 𝒫 𝒫 B B A
5 4 sspwd A FinII B A x 𝒫 𝒫 B 𝒫 B 𝒫 A
6 3 5 sstrd A FinII B A x 𝒫 𝒫 B x 𝒫 A
7 fin2i A FinII x 𝒫 A x [⊂] Or x x x
8 7 ex A FinII x 𝒫 A x [⊂] Or x x x
9 1 6 8 syl2anc A FinII B A x 𝒫 𝒫 B x [⊂] Or x x x
10 9 ralrimiva A FinII B A x 𝒫 𝒫 B x [⊂] Or x x x
11 ssexg B A A FinII B V
12 11 ancoms A FinII B A B V
13 isfin2 B V B FinII x 𝒫 𝒫 B x [⊂] Or x x x
14 12 13 syl A FinII B A B FinII x 𝒫 𝒫 B x [⊂] Or x x x
15 10 14 mpbird A FinII B A B FinII