Metamath Proof Explorer


Theorem ssfin3ds

Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014)

Ref Expression
Hypothesis isfin3ds.f F = g | a 𝒫 g ω b ω a suc b a b ran a ran a
Assertion ssfin3ds A F B A B F

Proof

Step Hyp Ref Expression
1 isfin3ds.f F = g | a 𝒫 g ω b ω a suc b a b ran a ran a
2 pwexg A F 𝒫 A V
3 simpr A F B A B A
4 3 sspwd A F B A 𝒫 B 𝒫 A
5 mapss 𝒫 A V 𝒫 B 𝒫 A 𝒫 B ω 𝒫 A ω
6 2 4 5 syl2an2r A F B A 𝒫 B ω 𝒫 A ω
7 1 isfin3ds A F A F f 𝒫 A ω x ω f suc x f x ran f ran f
8 7 ibi A F f 𝒫 A ω x ω f suc x f x ran f ran f
9 8 adantr A F B A f 𝒫 A ω x ω f suc x f x ran f ran f
10 ssralv 𝒫 B ω 𝒫 A ω f 𝒫 A ω x ω f suc x f x ran f ran f f 𝒫 B ω x ω f suc x f x ran f ran f
11 6 9 10 sylc A F B A f 𝒫 B ω x ω f suc x f x ran f ran f
12 ssexg B A A F B V
13 12 ancoms A F B A B V
14 1 isfin3ds B V B F f 𝒫 B ω x ω f suc x f x ran f ran f
15 13 14 syl A F B A B F f 𝒫 B ω x ω f suc x f x ran f ran f
16 11 15 mpbird A F B A B F