Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
ssfin3ds
Next ⟩
fin23lem12
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssfin3ds
Description:
A subset of a III-finite set is III-finite.
(Contributed by
Stefan O'Rear
, 4-Nov-2014)
Ref
Expression
Hypothesis
isfin3ds.f
⊢
F
=
g
|
∀
a
∈
𝒫
g
ω
∀
b
∈
ω
a
⁡
suc
⁡
b
⊆
a
⁡
b
→
⋂
ran
⁡
a
∈
ran
⁡
a
Assertion
ssfin3ds
⊢
A
∈
F
∧
B
⊆
A
→
B
∈
F
Proof
Step
Hyp
Ref
Expression
1
isfin3ds.f
⊢
F
=
g
|
∀
a
∈
𝒫
g
ω
∀
b
∈
ω
a
⁡
suc
⁡
b
⊆
a
⁡
b
→
⋂
ran
⁡
a
∈
ran
⁡
a
2
pwexg
⊢
A
∈
F
→
𝒫
A
∈
V
3
simpr
⊢
A
∈
F
∧
B
⊆
A
→
B
⊆
A
4
3
sspwd
⊢
A
∈
F
∧
B
⊆
A
→
𝒫
B
⊆
𝒫
A
5
mapss
⊢
𝒫
A
∈
V
∧
𝒫
B
⊆
𝒫
A
→
𝒫
B
ω
⊆
𝒫
A
ω
6
2
4
5
syl2an2r
⊢
A
∈
F
∧
B
⊆
A
→
𝒫
B
ω
⊆
𝒫
A
ω
7
1
isfin3ds
⊢
A
∈
F
→
A
∈
F
↔
∀
f
∈
𝒫
A
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
8
7
ibi
⊢
A
∈
F
→
∀
f
∈
𝒫
A
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
9
8
adantr
⊢
A
∈
F
∧
B
⊆
A
→
∀
f
∈
𝒫
A
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
10
ssralv
⊢
𝒫
B
ω
⊆
𝒫
A
ω
→
∀
f
∈
𝒫
A
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
→
∀
f
∈
𝒫
B
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
11
6
9
10
sylc
⊢
A
∈
F
∧
B
⊆
A
→
∀
f
∈
𝒫
B
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
12
ssexg
⊢
B
⊆
A
∧
A
∈
F
→
B
∈
V
13
12
ancoms
⊢
A
∈
F
∧
B
⊆
A
→
B
∈
V
14
1
isfin3ds
⊢
B
∈
V
→
B
∈
F
↔
∀
f
∈
𝒫
B
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
15
13
14
syl
⊢
A
∈
F
∧
B
⊆
A
→
B
∈
F
↔
∀
f
∈
𝒫
B
ω
∀
x
∈
ω
f
⁡
suc
⁡
x
⊆
f
⁡
x
→
⋂
ran
⁡
f
∈
ran
⁡
f
16
11
15
mpbird
⊢
A
∈
F
∧
B
⊆
A
→
B
∈
F