Metamath Proof Explorer


Theorem ssfin4

Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 6-May-2015) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion ssfin4 A FinIV B A B FinIV

Proof

Step Hyp Ref Expression
1 simpll A FinIV B A x B x B A FinIV
2 pssss x B x B
3 simpr A FinIV B A B A
4 2 3 sylan9ssr A FinIV B A x B x A
5 difssd A FinIV B A x B A B A
6 4 5 unssd A FinIV B A x B x A B A
7 pssnel x B c c B ¬ c x
8 7 adantl A FinIV B A x B c c B ¬ c x
9 simpllr A FinIV B A x B c B ¬ c x B A
10 simprl A FinIV B A x B c B ¬ c x c B
11 9 10 sseldd A FinIV B A x B c B ¬ c x c A
12 simprr A FinIV B A x B c B ¬ c x ¬ c x
13 elndif c B ¬ c A B
14 13 ad2antrl A FinIV B A x B c B ¬ c x ¬ c A B
15 ioran ¬ c x c A B ¬ c x ¬ c A B
16 elun c x A B c x c A B
17 15 16 xchnxbir ¬ c x A B ¬ c x ¬ c A B
18 12 14 17 sylanbrc A FinIV B A x B c B ¬ c x ¬ c x A B
19 nelneq2 c A ¬ c x A B ¬ A = x A B
20 11 18 19 syl2anc A FinIV B A x B c B ¬ c x ¬ A = x A B
21 eqcom A = x A B x A B = A
22 20 21 sylnib A FinIV B A x B c B ¬ c x ¬ x A B = A
23 8 22 exlimddv A FinIV B A x B ¬ x A B = A
24 dfpss2 x A B A x A B A ¬ x A B = A
25 6 23 24 sylanbrc A FinIV B A x B x A B A
26 25 adantrr A FinIV B A x B x B x A B A
27 simprr A FinIV B A x B x B x B
28 difexg A FinIV A B V
29 enrefg A B V A B A B
30 1 28 29 3syl A FinIV B A x B x B A B A B
31 2 ad2antrl A FinIV B A x B x B x B
32 ssinss1 x B x A B
33 31 32 syl A FinIV B A x B x B x A B
34 inssdif0 x A B x A B =
35 33 34 sylib A FinIV B A x B x B x A B =
36 disjdif B A B =
37 35 36 jctir A FinIV B A x B x B x A B = B A B =
38 unen x B A B A B x A B = B A B = x A B B A B
39 27 30 37 38 syl21anc A FinIV B A x B x B x A B B A B
40 simplr A FinIV B A x B x B B A
41 undif B A B A B = A
42 40 41 sylib A FinIV B A x B x B B A B = A
43 39 42 breqtrd A FinIV B A x B x B x A B A
44 fin4i x A B A x A B A ¬ A FinIV
45 26 43 44 syl2anc A FinIV B A x B x B ¬ A FinIV
46 1 45 pm2.65da A FinIV B A ¬ x B x B
47 46 nexdv A FinIV B A ¬ x x B x B
48 ssexg B A A FinIV B V
49 48 ancoms A FinIV B A B V
50 isfin4 B V B FinIV ¬ x x B x B
51 49 50 syl A FinIV B A B FinIV ¬ x x B x B
52 47 51 mpbird A FinIV B A B FinIV