Metamath Proof Explorer


Theorem ssfiunibd

Description: A finite union of bounded sets is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ssfiunibd.fi φAFin
ssfiunibd.b φzAB
ssfiunibd.bd φxAyzxBy
ssfiunibd.ssun φCA
Assertion ssfiunibd φwzCBw

Proof

Step Hyp Ref Expression
1 ssfiunibd.fi φAFin
2 ssfiunibd.b φzAB
3 ssfiunibd.bd φxAyzxBy
4 ssfiunibd.ssun φCA
5 simpll φxAzxφ
6 19.8a zxxAxzxxA
7 6 ancoms xAzxxzxxA
8 eluni zAxzxxA
9 7 8 sylibr xAzxzA
10 9 adantll φxAzxzA
11 5 10 2 syl2anc φxAzxB
12 eqid ifx=0supu|zxu=B<=ifx=0supu|zxu=B<
13 11 3 12 upbdrech2 φxAifx=0supu|zxu=B<zxBifx=0supu|zxu=B<
14 13 simpld φxAifx=0supu|zxu=B<
15 14 ralrimiva φxAifx=0supu|zxu=B<
16 fimaxre3 AFinxAifx=0supu|zxu=B<wxAifx=0supu|zxu=B<w
17 1 15 16 syl2anc φwxAifx=0supu|zxu=B<w
18 nfv zφw
19 nfcv _zA
20 nfv zx=
21 nfcv _z0
22 nfre1 zzxu=B
23 22 nfab _zu|zxu=B
24 nfcv _z
25 nfcv _z<
26 23 24 25 nfsup _zsupu|zxu=B<
27 20 21 26 nfif _zifx=0supu|zxu=B<
28 nfcv _z
29 nfcv _zw
30 27 28 29 nfbr zifx=0supu|zxu=B<w
31 19 30 nfralw zxAifx=0supu|zxu=B<w
32 18 31 nfan zφwxAifx=0supu|zxu=B<w
33 4 sselda φzCzA
34 33 8 sylib φzCxzxxA
35 exancom xzxxAxxAzx
36 34 35 sylib φzCxxAzx
37 df-rex xAzxxxAzx
38 36 37 sylibr φzCxAzx
39 38 ad4ant14 φwxAifx=0supu|zxu=B<wzCxAzx
40 nfv xφw
41 nfra1 xxAifx=0supu|zxu=B<w
42 40 41 nfan xφwxAifx=0supu|zxu=B<w
43 nfv xzC
44 42 43 nfan xφwxAifx=0supu|zxu=B<wzC
45 nfv xBw
46 11 3impa φxAzxB
47 46 3adant1r φwxAzxB
48 47 3adant1r φwxAifx=0supu|zxu=B<wxAzxB
49 n0i zx¬x=
50 49 adantl xAzx¬x=
51 50 iffalsed xAzxifx=0supu|zxu=B<=supu|zxu=B<
52 51 eqcomd xAzxsupu|zxu=B<=ifx=0supu|zxu=B<
53 52 3adant1 φxAzxsupu|zxu=B<=ifx=0supu|zxu=B<
54 14 3adant3 φxAzxifx=0supu|zxu=B<
55 53 54 eqeltrd φxAzxsupu|zxu=B<
56 55 3adant1r φwxAzxsupu|zxu=B<
57 56 3adant1r φwxAifx=0supu|zxu=B<wxAzxsupu|zxu=B<
58 simp1lr φwxAifx=0supu|zxu=B<wxAzxw
59 nfv uφxA
60 nfab1 _uu|zxu=B
61 nfcv _u
62 abid uu|zxu=Bzxu=B
63 62 biimpi uu|zxu=Bzxu=B
64 63 adantl φxAuu|zxu=Bzxu=B
65 nfv zφxA
66 22 nfsab zuu|zxu=B
67 65 66 nfan zφxAuu|zxu=B
68 nfv zu
69 simp3 φxAzxu=Bu=B
70 11 3adant3 φxAzxu=BB
71 69 70 eqeltrd φxAzxu=Bu
72 71 3exp φxAzxu=Bu
73 72 adantr φxAuu|zxu=Bzxu=Bu
74 67 68 73 rexlimd φxAuu|zxu=Bzxu=Bu
75 64 74 mpd φxAuu|zxu=Bu
76 75 ex φxAuu|zxu=Bu
77 59 60 61 76 ssrd φxAu|zxu=B
78 77 3adant3 φxAzxu|zxu=B
79 simp3 φxAzxzx
80 elabrexg zxBBu|zxu=B
81 79 46 80 syl2anc φxAzxBu|zxu=B
82 81 ne0d φxAzxu|zxu=B
83 abid vv|zxv=Bzxv=B
84 83 biimpi vv|zxv=Bzxv=B
85 eqeq1 u=vu=Bv=B
86 85 rexbidv u=vzxu=Bzxv=B
87 86 cbvabv u|zxu=B=v|zxv=B
88 84 87 eleq2s vu|zxu=Bzxv=B
89 88 adantl φxAzxByvu|zxu=Bzxv=B
90 nfra1 zzxBy
91 65 90 nfan zφxAzxBy
92 22 nfsab zvu|zxu=B
93 91 92 nfan zφxAzxByvu|zxu=B
94 nfv zvy
95 simp3 zxByzxv=Bv=B
96 rspa zxByzxBy
97 96 3adant3 zxByzxv=BBy
98 95 97 eqbrtrd zxByzxv=Bvy
99 98 3exp zxByzxv=Bvy
100 99 adantl φxAzxByzxv=Bvy
101 100 adantr φxAzxByvu|zxu=Bzxv=Bvy
102 93 94 101 rexlimd φxAzxByvu|zxu=Bzxv=Bvy
103 89 102 mpd φxAzxByvu|zxu=Bvy
104 103 ralrimiva φxAzxByvu|zxu=Bvy
105 104 ex φxAzxByvu|zxu=Bvy
106 105 reximdv φxAyzxByyvu|zxu=Bvy
107 3 106 mpd φxAyvu|zxu=Bvy
108 107 3adant3 φxAzxyvu|zxu=Bvy
109 suprub u|zxu=Bu|zxu=Byvu|zxu=BvyBu|zxu=BBsupu|zxu=B<
110 78 82 108 81 109 syl31anc φxAzxBsupu|zxu=B<
111 110 3adant1r φwxAzxBsupu|zxu=B<
112 111 3adant1r φwxAifx=0supu|zxu=B<wxAzxBsupu|zxu=B<
113 52 3adant1 xAifx=0supu|zxu=B<wxAzxsupu|zxu=B<=ifx=0supu|zxu=B<
114 rspa xAifx=0supu|zxu=B<wxAifx=0supu|zxu=B<w
115 114 3adant3 xAifx=0supu|zxu=B<wxAzxifx=0supu|zxu=B<w
116 113 115 eqbrtrd xAifx=0supu|zxu=B<wxAzxsupu|zxu=B<w
117 116 3adant1l φwxAifx=0supu|zxu=B<wxAzxsupu|zxu=B<w
118 48 57 58 112 117 letrd φwxAifx=0supu|zxu=B<wxAzxBw
119 118 3exp φwxAifx=0supu|zxu=B<wxAzxBw
120 119 adantr φwxAifx=0supu|zxu=B<wzCxAzxBw
121 44 45 120 rexlimd φwxAifx=0supu|zxu=B<wzCxAzxBw
122 39 121 mpd φwxAifx=0supu|zxu=B<wzCBw
123 122 ex φwxAifx=0supu|zxu=B<wzCBw
124 32 123 ralrimi φwxAifx=0supu|zxu=B<wzCBw
125 124 ex φwxAifx=0supu|zxu=B<wzCBw
126 125 reximdva φwxAifx=0supu|zxu=B<wwzCBw
127 17 126 mpd φwzCBw