Metamath Proof Explorer


Theorem ssfiunibd

Description: A finite union of bounded sets is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ssfiunibd.fi φ A Fin
ssfiunibd.b φ z A B
ssfiunibd.bd φ x A y z x B y
ssfiunibd.ssun φ C A
Assertion ssfiunibd φ w z C B w

Proof

Step Hyp Ref Expression
1 ssfiunibd.fi φ A Fin
2 ssfiunibd.b φ z A B
3 ssfiunibd.bd φ x A y z x B y
4 ssfiunibd.ssun φ C A
5 simpll φ x A z x φ
6 19.8a z x x A x z x x A
7 6 ancoms x A z x x z x x A
8 eluni z A x z x x A
9 7 8 sylibr x A z x z A
10 9 adantll φ x A z x z A
11 5 10 2 syl2anc φ x A z x B
12 eqid if x = 0 sup u | z x u = B < = if x = 0 sup u | z x u = B <
13 11 3 12 upbdrech2 φ x A if x = 0 sup u | z x u = B < z x B if x = 0 sup u | z x u = B <
14 13 simpld φ x A if x = 0 sup u | z x u = B <
15 14 ralrimiva φ x A if x = 0 sup u | z x u = B <
16 fimaxre3 A Fin x A if x = 0 sup u | z x u = B < w x A if x = 0 sup u | z x u = B < w
17 1 15 16 syl2anc φ w x A if x = 0 sup u | z x u = B < w
18 nfv z φ w
19 nfcv _ z A
20 nfv z x =
21 nfcv _ z 0
22 nfre1 z z x u = B
23 22 nfab _ z u | z x u = B
24 nfcv _ z
25 nfcv _ z <
26 23 24 25 nfsup _ z sup u | z x u = B <
27 20 21 26 nfif _ z if x = 0 sup u | z x u = B <
28 nfcv _ z
29 nfcv _ z w
30 27 28 29 nfbr z if x = 0 sup u | z x u = B < w
31 19 30 nfralw z x A if x = 0 sup u | z x u = B < w
32 18 31 nfan z φ w x A if x = 0 sup u | z x u = B < w
33 4 sselda φ z C z A
34 33 8 sylib φ z C x z x x A
35 exancom x z x x A x x A z x
36 34 35 sylib φ z C x x A z x
37 df-rex x A z x x x A z x
38 36 37 sylibr φ z C x A z x
39 38 ad4ant14 φ w x A if x = 0 sup u | z x u = B < w z C x A z x
40 nfv x φ w
41 nfra1 x x A if x = 0 sup u | z x u = B < w
42 40 41 nfan x φ w x A if x = 0 sup u | z x u = B < w
43 nfv x z C
44 42 43 nfan x φ w x A if x = 0 sup u | z x u = B < w z C
45 nfv x B w
46 11 3impa φ x A z x B
47 46 3adant1r φ w x A z x B
48 47 3adant1r φ w x A if x = 0 sup u | z x u = B < w x A z x B
49 n0i z x ¬ x =
50 49 adantl x A z x ¬ x =
51 50 iffalsed x A z x if x = 0 sup u | z x u = B < = sup u | z x u = B <
52 51 eqcomd x A z x sup u | z x u = B < = if x = 0 sup u | z x u = B <
53 52 3adant1 φ x A z x sup u | z x u = B < = if x = 0 sup u | z x u = B <
54 14 3adant3 φ x A z x if x = 0 sup u | z x u = B <
55 53 54 eqeltrd φ x A z x sup u | z x u = B <
56 55 3adant1r φ w x A z x sup u | z x u = B <
57 56 3adant1r φ w x A if x = 0 sup u | z x u = B < w x A z x sup u | z x u = B <
58 simp1lr φ w x A if x = 0 sup u | z x u = B < w x A z x w
59 nfv u φ x A
60 nfab1 _ u u | z x u = B
61 nfcv _ u
62 abid u u | z x u = B z x u = B
63 62 biimpi u u | z x u = B z x u = B
64 63 adantl φ x A u u | z x u = B z x u = B
65 nfv z φ x A
66 22 nfsab z u u | z x u = B
67 65 66 nfan z φ x A u u | z x u = B
68 nfv z u
69 simp3 φ x A z x u = B u = B
70 11 3adant3 φ x A z x u = B B
71 69 70 eqeltrd φ x A z x u = B u
72 71 3exp φ x A z x u = B u
73 72 adantr φ x A u u | z x u = B z x u = B u
74 67 68 73 rexlimd φ x A u u | z x u = B z x u = B u
75 64 74 mpd φ x A u u | z x u = B u
76 75 ex φ x A u u | z x u = B u
77 59 60 61 76 ssrd φ x A u | z x u = B
78 77 3adant3 φ x A z x u | z x u = B
79 simp3 φ x A z x z x
80 elabrexg z x B B u | z x u = B
81 79 46 80 syl2anc φ x A z x B u | z x u = B
82 81 ne0d φ x A z x u | z x u = B
83 abid v v | z x v = B z x v = B
84 83 biimpi v v | z x v = B z x v = B
85 eqeq1 u = v u = B v = B
86 85 rexbidv u = v z x u = B z x v = B
87 86 cbvabv u | z x u = B = v | z x v = B
88 84 87 eleq2s v u | z x u = B z x v = B
89 88 adantl φ x A z x B y v u | z x u = B z x v = B
90 nfra1 z z x B y
91 65 90 nfan z φ x A z x B y
92 22 nfsab z v u | z x u = B
93 91 92 nfan z φ x A z x B y v u | z x u = B
94 nfv z v y
95 simp3 z x B y z x v = B v = B
96 rspa z x B y z x B y
97 96 3adant3 z x B y z x v = B B y
98 95 97 eqbrtrd z x B y z x v = B v y
99 98 3exp z x B y z x v = B v y
100 99 adantl φ x A z x B y z x v = B v y
101 100 adantr φ x A z x B y v u | z x u = B z x v = B v y
102 93 94 101 rexlimd φ x A z x B y v u | z x u = B z x v = B v y
103 89 102 mpd φ x A z x B y v u | z x u = B v y
104 103 ralrimiva φ x A z x B y v u | z x u = B v y
105 104 ex φ x A z x B y v u | z x u = B v y
106 105 reximdv φ x A y z x B y y v u | z x u = B v y
107 3 106 mpd φ x A y v u | z x u = B v y
108 107 3adant3 φ x A z x y v u | z x u = B v y
109 suprub u | z x u = B u | z x u = B y v u | z x u = B v y B u | z x u = B B sup u | z x u = B <
110 78 82 108 81 109 syl31anc φ x A z x B sup u | z x u = B <
111 110 3adant1r φ w x A z x B sup u | z x u = B <
112 111 3adant1r φ w x A if x = 0 sup u | z x u = B < w x A z x B sup u | z x u = B <
113 52 3adant1 x A if x = 0 sup u | z x u = B < w x A z x sup u | z x u = B < = if x = 0 sup u | z x u = B <
114 rspa x A if x = 0 sup u | z x u = B < w x A if x = 0 sup u | z x u = B < w
115 114 3adant3 x A if x = 0 sup u | z x u = B < w x A z x if x = 0 sup u | z x u = B < w
116 113 115 eqbrtrd x A if x = 0 sup u | z x u = B < w x A z x sup u | z x u = B < w
117 116 3adant1l φ w x A if x = 0 sup u | z x u = B < w x A z x sup u | z x u = B < w
118 48 57 58 112 117 letrd φ w x A if x = 0 sup u | z x u = B < w x A z x B w
119 118 3exp φ w x A if x = 0 sup u | z x u = B < w x A z x B w
120 119 adantr φ w x A if x = 0 sup u | z x u = B < w z C x A z x B w
121 44 45 120 rexlimd φ w x A if x = 0 sup u | z x u = B < w z C x A z x B w
122 39 121 mpd φ w x A if x = 0 sup u | z x u = B < w z C B w
123 122 ex φ w x A if x = 0 sup u | z x u = B < w z C B w
124 32 123 ralrimi φ w x A if x = 0 sup u | z x u = B < w z C B w
125 124 ex φ w x A if x = 0 sup u | z x u = B < w z C B w
126 125 reximdva φ w x A if x = 0 sup u | z x u = B < w w z C B w
127 17 126 mpd φ w z C B w