Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
|
2 |
1
|
biimpri |
|
3 |
2
|
3adant2 |
|
4 |
|
ssfzo12 |
|
5 |
3 4
|
syl |
|
6 |
|
elfzo2 |
|
7 |
|
eluz2 |
|
8 |
|
simprrl |
|
9 |
8
|
adantr |
|
10 |
|
simpll |
|
11 |
|
zre |
|
12 |
11
|
adantr |
|
13 |
12
|
adantl |
|
14 |
|
zre |
|
15 |
14
|
adantr |
|
16 |
15
|
adantr |
|
17 |
|
zre |
|
18 |
17
|
adantr |
|
19 |
|
letr |
|
20 |
13 16 18 19
|
syl2an23an |
|
21 |
20
|
imp |
|
22 |
9 10 21
|
3jca |
|
23 |
22
|
exp31 |
|
24 |
23
|
com23 |
|
25 |
24
|
expdimp |
|
26 |
25
|
impancom |
|
27 |
26
|
com13 |
|
28 |
27
|
3adant3 |
|
29 |
28
|
com12 |
|
30 |
29
|
adantr |
|
31 |
30
|
impcom |
|
32 |
31
|
com12 |
|
33 |
32
|
adantr |
|
34 |
33
|
imp |
|
35 |
|
eluz2 |
|
36 |
34 35
|
sylibr |
|
37 |
|
simpl2r |
|
38 |
37
|
adantl |
|
39 |
17
|
adantl |
|
40 |
|
zre |
|
41 |
40
|
ad3antlr |
|
42 |
|
zre |
|
43 |
42
|
adantl |
|
44 |
43
|
adantl |
|
45 |
44
|
adantr |
|
46 |
|
ltletr |
|
47 |
39 41 45 46
|
syl3anc |
|
48 |
47
|
ex |
|
49 |
48
|
com23 |
|
50 |
49
|
3adant3 |
|
51 |
50
|
expcomd |
|
52 |
51
|
adantld |
|
53 |
52
|
imp |
|
54 |
53
|
com13 |
|
55 |
54
|
adantr |
|
56 |
55
|
imp |
|
57 |
56
|
imp |
|
58 |
|
elfzo2 |
|
59 |
36 38 57 58
|
syl3anbrc |
|
60 |
59
|
exp31 |
|
61 |
60
|
3adant1 |
|
62 |
7 61
|
sylbi |
|
63 |
62
|
imp |
|
64 |
63
|
3adant2 |
|
65 |
6 64
|
sylbi |
|
66 |
65
|
com12 |
|
67 |
66
|
ssrdv |
|
68 |
67
|
ex |
|
69 |
5 68
|
impbid |
|