Metamath Proof Explorer


Theorem ssfzunsn

Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021) (Proof shortened by AV, 13-Nov-2021)

Ref Expression
Assertion ssfzunsn S M N N I M S I M if I N N I

Proof

Step Hyp Ref Expression
1 simp1 S M N N I M S M N
2 eluzel2 I M M
3 2 3ad2ant3 S M N N I M M
4 simp2 S M N N I M N
5 eluzelz I M I
6 5 3ad2ant3 S M N N I M I
7 ssfzunsnext S M N M N I S I if I M I M if I N N I
8 1 3 4 6 7 syl13anc S M N N I M S I if I M I M if I N N I
9 eluz2 I M M I M I
10 zre I I
11 10 rexrd I I *
12 11 3ad2ant2 M I M I I *
13 zre M M
14 13 rexrd M M *
15 14 3ad2ant1 M I M I M *
16 simp3 M I M I M I
17 xrmineq I * M * M I if I M I M = M
18 12 15 16 17 syl3anc M I M I if I M I M = M
19 18 eqcomd M I M I M = if I M I M
20 9 19 sylbi I M M = if I M I M
21 20 3ad2ant3 S M N N I M M = if I M I M
22 21 oveq1d S M N N I M M if I N N I = if I M I M if I N N I
23 8 22 sseqtrrd S M N N I M S I M if I N N I