Metamath Proof Explorer


Theorem sshaus

Description: A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Hypothesis t1sep.1 X = J
Assertion sshaus J Haus K TopOn X J K K Haus

Proof

Step Hyp Ref Expression
1 t1sep.1 X = J
2 haustop J Haus J Top
3 cnhaus J Haus I X : X 1-1 X I X K Cn J K Haus
4 1 2 3 sshauslem J Haus K TopOn X J K K Haus