Metamath Proof Explorer


Theorem sshauslem

Description: Lemma for sshaus and similar theorems. If the topological property A is preserved under injective preimages, then a topology finer than one with property A also has property A . (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses t1sep.1 X = J
sshauslem.2 J A J Top
sshauslem.3 J A I X : X 1-1 X I X K Cn J K A
Assertion sshauslem J A K TopOn X J K K A

Proof

Step Hyp Ref Expression
1 t1sep.1 X = J
2 sshauslem.2 J A J Top
3 sshauslem.3 J A I X : X 1-1 X I X K Cn J K A
4 simp1 J A K TopOn X J K J A
5 f1oi I X : X 1-1 onto X
6 f1of1 I X : X 1-1 onto X I X : X 1-1 X
7 5 6 mp1i J A K TopOn X J K I X : X 1-1 X
8 simp3 J A K TopOn X J K J K
9 simp2 J A K TopOn X J K K TopOn X
10 2 3ad2ant1 J A K TopOn X J K J Top
11 1 toptopon J Top J TopOn X
12 10 11 sylib J A K TopOn X J K J TopOn X
13 ssidcn K TopOn X J TopOn X I X K Cn J J K
14 9 12 13 syl2anc J A K TopOn X J K I X K Cn J J K
15 8 14 mpbird J A K TopOn X J K I X K Cn J
16 4 7 15 3 syl3anc J A K TopOn X J K K A