Metamath Proof Explorer


Theorem sshhococi

Description: The join of two Hilbert space subsets (not necessarily closed subspaces) equals the join of their closures (double orthocomplements). (Contributed by NM, 1-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses sshjococ.1 A
sshjococ.2 B
Assertion sshhococi A B = A B

Proof

Step Hyp Ref Expression
1 sshjococ.1 A
2 sshjococ.2 B
3 ococss A A A
4 1 3 ax-mp A A
5 ococss B B B
6 2 5 ax-mp B B
7 unss12 A A B B A B A B
8 4 6 7 mp2an A B A B
9 1 2 unssi A B
10 occl A A C
11 1 10 ax-mp A C
12 11 choccli A C
13 12 chssii A
14 occl B B C
15 2 14 ax-mp B C
16 15 choccli B C
17 16 chssii B
18 13 17 unssi A B
19 9 18 occon2i A B A B A B A B
20 8 19 ax-mp A B A B
21 sshjval A B A B = A B
22 1 2 21 mp2an A B = A B
23 12 16 chjvali A B = A B
24 20 22 23 3sstr4i A B A B
25 ssun1 A A B
26 ococss A B A B A B
27 9 26 ax-mp A B A B
28 25 27 sstri A A B
29 28 22 sseqtrri A A B
30 sshjcl A B A B C
31 1 2 30 mp2an A B C
32 31 chssii A B
33 1 32 occon2i A A B A A B
34 29 33 ax-mp A A B
35 ssun2 B A B
36 35 27 sstri B A B
37 36 22 sseqtrri B A B
38 2 32 occon2i B A B B A B
39 37 38 ax-mp B A B
40 31 choccli A B C
41 40 choccli A B C
42 12 16 41 chlubii A A B B A B A B A B
43 34 39 42 mp2an A B A B
44 31 ococi A B = A B
45 43 44 sseqtri A B A B
46 24 45 eqssi A B = A B