Metamath Proof Explorer


Theorem sshjval

Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion sshjval A B A B = A B

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 elpw2 A 𝒫 A
3 1 elpw2 B 𝒫 B
4 uneq12 x = A y = B x y = A B
5 4 fveq2d x = A y = B x y = A B
6 5 fveq2d x = A y = B x y = A B
7 df-chj = x 𝒫 , y 𝒫 x y
8 fvex A B V
9 6 7 8 ovmpoa A 𝒫 B 𝒫 A B = A B
10 2 3 9 syl2anbr A B A B = A B