Metamath Proof Explorer


Theorem ssimaexg

Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007)

Ref Expression
Assertion ssimaexg A C Fun F B F A x x A B = F x

Proof

Step Hyp Ref Expression
1 imaeq2 y = A F y = F A
2 1 sseq2d y = A B F y B F A
3 2 anbi2d y = A Fun F B F y Fun F B F A
4 sseq2 y = A x y x A
5 4 anbi1d y = A x y B = F x x A B = F x
6 5 exbidv y = A x x y B = F x x x A B = F x
7 3 6 imbi12d y = A Fun F B F y x x y B = F x Fun F B F A x x A B = F x
8 vex y V
9 8 ssimaex Fun F B F y x x y B = F x
10 7 9 vtoclg A C Fun F B F A x x A B = F x
11 10 3impib A C Fun F B F A x x A B = F x