Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ssimaexg
Next ⟩
funfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssimaexg
Description:
The existence of a subimage.
(Contributed by
FL
, 15-Apr-2007)
Ref
Expression
Assertion
ssimaexg
⊢
A
∈
C
∧
Fun
⁡
F
∧
B
⊆
F
A
→
∃
x
x
⊆
A
∧
B
=
F
x
Proof
Step
Hyp
Ref
Expression
1
imaeq2
⊢
y
=
A
→
F
y
=
F
A
2
1
sseq2d
⊢
y
=
A
→
B
⊆
F
y
↔
B
⊆
F
A
3
2
anbi2d
⊢
y
=
A
→
Fun
⁡
F
∧
B
⊆
F
y
↔
Fun
⁡
F
∧
B
⊆
F
A
4
sseq2
⊢
y
=
A
→
x
⊆
y
↔
x
⊆
A
5
4
anbi1d
⊢
y
=
A
→
x
⊆
y
∧
B
=
F
x
↔
x
⊆
A
∧
B
=
F
x
6
5
exbidv
⊢
y
=
A
→
∃
x
x
⊆
y
∧
B
=
F
x
↔
∃
x
x
⊆
A
∧
B
=
F
x
7
3
6
imbi12d
⊢
y
=
A
→
Fun
⁡
F
∧
B
⊆
F
y
→
∃
x
x
⊆
y
∧
B
=
F
x
↔
Fun
⁡
F
∧
B
⊆
F
A
→
∃
x
x
⊆
A
∧
B
=
F
x
8
vex
⊢
y
∈
V
9
8
ssimaex
⊢
Fun
⁡
F
∧
B
⊆
F
y
→
∃
x
x
⊆
y
∧
B
=
F
x
10
7
9
vtoclg
⊢
A
∈
C
→
Fun
⁡
F
∧
B
⊆
F
A
→
∃
x
x
⊆
A
∧
B
=
F
x
11
10
3impib
⊢
A
∈
C
∧
Fun
⁡
F
∧
B
⊆
F
A
→
∃
x
x
⊆
A
∧
B
=
F
x