Metamath Proof Explorer


Theorem ssin

Description: Subclass of intersection. Theorem 2.8(vii) of Monk1 p. 26. (Contributed by NM, 15-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssin A B A C A B C

Proof

Step Hyp Ref Expression
1 elin x B C x B x C
2 1 imbi2i x A x B C x A x B x C
3 2 albii x x A x B C x x A x B x C
4 jcab x A x B x C x A x B x A x C
5 4 albii x x A x B x C x x A x B x A x C
6 19.26 x x A x B x A x C x x A x B x x A x C
7 3 5 6 3bitrri x x A x B x x A x C x x A x B C
8 dfss2 A B x x A x B
9 dfss2 A C x x A x C
10 8 9 anbi12i A B A C x x A x B x x A x C
11 dfss2 A B C x x A x B C
12 7 10 11 3bitr4i A B A C A B C