Step |
Hyp |
Ref |
Expression |
1 |
|
ssinc.1 |
|
2 |
|
ssinc.2 |
|
3 |
|
eluzel2 |
|
4 |
1 3
|
syl |
|
5 |
|
eluzelz |
|
6 |
1 5
|
syl |
|
7 |
4 6
|
jca |
|
8 |
|
eluzle |
|
9 |
1 8
|
syl |
|
10 |
6
|
zred |
|
11 |
10
|
leidd |
|
12 |
6 9 11
|
3jca |
|
13 |
7 12
|
jca |
|
14 |
|
id |
|
15 |
|
fveq2 |
|
16 |
15
|
sseq2d |
|
17 |
16
|
imbi2d |
|
18 |
|
fveq2 |
|
19 |
18
|
sseq2d |
|
20 |
19
|
imbi2d |
|
21 |
|
fveq2 |
|
22 |
21
|
sseq2d |
|
23 |
22
|
imbi2d |
|
24 |
|
fveq2 |
|
25 |
24
|
sseq2d |
|
26 |
25
|
imbi2d |
|
27 |
|
ssidd |
|
28 |
27
|
a1i |
|
29 |
|
simpr |
|
30 |
|
simpl |
|
31 |
|
pm3.35 |
|
32 |
29 30 31
|
syl2anc |
|
33 |
32
|
3adant1 |
|
34 |
|
simpr |
|
35 |
|
simplll |
|
36 |
|
simplr1 |
|
37 |
|
simplr2 |
|
38 |
35 36 37
|
3jca |
|
39 |
|
eluz2 |
|
40 |
38 39
|
sylibr |
|
41 |
|
simpllr |
|
42 |
|
simplr3 |
|
43 |
40 41 42
|
3jca |
|
44 |
|
elfzo2 |
|
45 |
43 44
|
sylibr |
|
46 |
34 45 2
|
syl2anc |
|
47 |
46
|
3adant2 |
|
48 |
33 47
|
sstrd |
|
49 |
48
|
3exp |
|
50 |
17 20 23 26 28 49
|
fzind |
|
51 |
13 14 50
|
sylc |
|