Metamath Proof Explorer


Theorem ssinc

Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ssinc.1 φ N M
ssinc.2 φ m M ..^ N F m F m + 1
Assertion ssinc φ F M F N

Proof

Step Hyp Ref Expression
1 ssinc.1 φ N M
2 ssinc.2 φ m M ..^ N F m F m + 1
3 eluzel2 N M M
4 1 3 syl φ M
5 eluzelz N M N
6 1 5 syl φ N
7 4 6 jca φ M N
8 eluzle N M M N
9 1 8 syl φ M N
10 6 zred φ N
11 10 leidd φ N N
12 6 9 11 3jca φ N M N N N
13 7 12 jca φ M N N M N N N
14 id φ φ
15 fveq2 n = M F n = F M
16 15 sseq2d n = M F M F n F M F M
17 16 imbi2d n = M φ F M F n φ F M F M
18 fveq2 n = m F n = F m
19 18 sseq2d n = m F M F n F M F m
20 19 imbi2d n = m φ F M F n φ F M F m
21 fveq2 n = m + 1 F n = F m + 1
22 21 sseq2d n = m + 1 F M F n F M F m + 1
23 22 imbi2d n = m + 1 φ F M F n φ F M F m + 1
24 fveq2 n = N F n = F N
25 24 sseq2d n = N F M F n F M F N
26 25 imbi2d n = N φ F M F n φ F M F N
27 ssidd φ F M F M
28 27 a1i M N M N φ F M F M
29 simpr φ F M F m φ φ
30 simpl φ F M F m φ φ F M F m
31 pm3.35 φ φ F M F m F M F m
32 29 30 31 syl2anc φ F M F m φ F M F m
33 32 3adant1 M N m M m m < N φ F M F m φ F M F m
34 simpr M N m M m m < N φ φ
35 simplll M N m M m m < N φ M
36 simplr1 M N m M m m < N φ m
37 simplr2 M N m M m m < N φ M m
38 35 36 37 3jca M N m M m m < N φ M m M m
39 eluz2 m M M m M m
40 38 39 sylibr M N m M m m < N φ m M
41 simpllr M N m M m m < N φ N
42 simplr3 M N m M m m < N φ m < N
43 40 41 42 3jca M N m M m m < N φ m M N m < N
44 elfzo2 m M ..^ N m M N m < N
45 43 44 sylibr M N m M m m < N φ m M ..^ N
46 34 45 2 syl2anc M N m M m m < N φ F m F m + 1
47 46 3adant2 M N m M m m < N φ F M F m φ F m F m + 1
48 33 47 sstrd M N m M m m < N φ F M F m φ F M F m + 1
49 48 3exp M N m M m m < N φ F M F m φ F M F m + 1
50 17 20 23 26 28 49 fzind M N N M N N N φ F M F N
51 13 14 50 sylc φ F M F N