Metamath Proof Explorer


Theorem ssinss2d

Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis ssinss2d.1 φ B C
Assertion ssinss2d φ A B C

Proof

Step Hyp Ref Expression
1 ssinss2d.1 φ B C
2 incom A B = B A
3 1 ssinss1d φ B A C
4 2 3 eqsstrid φ A B C