Metamath Proof Explorer


Theorem ssintrab

Description: Subclass of the intersection of a restricted class abstraction. (Contributed by NM, 30-Jan-2015)

Ref Expression
Assertion ssintrab A x B | φ x B φ A x

Proof

Step Hyp Ref Expression
1 df-rab x B | φ = x | x B φ
2 1 inteqi x B | φ = x | x B φ
3 2 sseq2i A x B | φ A x | x B φ
4 impexp x B φ A x x B φ A x
5 4 albii x x B φ A x x x B φ A x
6 ssintab A x | x B φ x x B φ A x
7 df-ral x B φ A x x x B φ A x
8 5 6 7 3bitr4i A x | x B φ x B φ A x
9 3 8 bitri A x B | φ x B φ A x