Metamath Proof Explorer


Theorem ssiun2

Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ssiun2 x A B x A B

Proof

Step Hyp Ref Expression
1 rspe x A y B x A y B
2 1 ex x A y B x A y B
3 eliun y x A B x A y B
4 2 3 syl6ibr x A y B y x A B
5 4 ssrdv x A B x A B