Metamath Proof Explorer


Theorem ssiun2s

Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003)

Ref Expression
Hypothesis ssiun2s.1 x = C B = D
Assertion ssiun2s C A D x A B

Proof

Step Hyp Ref Expression
1 ssiun2s.1 x = C B = D
2 nfcv _ x C
3 nfcv _ x D
4 nfiu1 _ x x A B
5 3 4 nfss x D x A B
6 1 sseq1d x = C B x A B D x A B
7 ssiun2 x A B x A B
8 2 5 6 7 vtoclgaf C A D x A B