Metamath Proof Explorer


Theorem ssiun2sf

Description: Subset relationship for an indexed union. (Contributed by Thierry Arnoux, 31-Dec-2016)

Ref Expression
Hypotheses ssiun2sf.1 _ x A
ssiun2sf.2 _ x C
ssiun2sf.3 _ x D
ssiun2sf.4 x = C B = D
Assertion ssiun2sf C A D x A B

Proof

Step Hyp Ref Expression
1 ssiun2sf.1 _ x A
2 ssiun2sf.2 _ x C
3 ssiun2sf.3 _ x D
4 ssiun2sf.4 x = C B = D
5 2 1 nfel x C A
6 nfiu1 _ x x A B
7 3 6 nfss x D x A B
8 5 7 nfim x C A D x A B
9 eleq1 x = C x A C A
10 4 sseq1d x = C B x A B D x A B
11 9 10 imbi12d x = C x A B x A B C A D x A B
12 ssiun2 x A B x A B
13 2 8 11 12 vtoclgf C A C A D x A B
14 13 pm2.43i C A D x A B