Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Indexed union - misc additions
ssiun2sf
Next ⟩
iuninc
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssiun2sf
Description:
Subset relationship for an indexed union.
(Contributed by
Thierry Arnoux
, 31-Dec-2016)
Ref
Expression
Hypotheses
ssiun2sf.1
⊢
Ⅎ
_
x
A
ssiun2sf.2
⊢
Ⅎ
_
x
C
ssiun2sf.3
⊢
Ⅎ
_
x
D
ssiun2sf.4
⊢
x
=
C
→
B
=
D
Assertion
ssiun2sf
⊢
C
∈
A
→
D
⊆
⋃
x
∈
A
B
Proof
Step
Hyp
Ref
Expression
1
ssiun2sf.1
⊢
Ⅎ
_
x
A
2
ssiun2sf.2
⊢
Ⅎ
_
x
C
3
ssiun2sf.3
⊢
Ⅎ
_
x
D
4
ssiun2sf.4
⊢
x
=
C
→
B
=
D
5
2
1
nfel
⊢
Ⅎ
x
C
∈
A
6
nfiu1
⊢
Ⅎ
_
x
⋃
x
∈
A
B
7
3
6
nfss
⊢
Ⅎ
x
D
⊆
⋃
x
∈
A
B
8
5
7
nfim
⊢
Ⅎ
x
C
∈
A
→
D
⊆
⋃
x
∈
A
B
9
eleq1
⊢
x
=
C
→
x
∈
A
↔
C
∈
A
10
4
sseq1d
⊢
x
=
C
→
B
⊆
⋃
x
∈
A
B
↔
D
⊆
⋃
x
∈
A
B
11
9
10
imbi12d
⊢
x
=
C
→
x
∈
A
→
B
⊆
⋃
x
∈
A
B
↔
C
∈
A
→
D
⊆
⋃
x
∈
A
B
12
ssiun2
⊢
x
∈
A
→
B
⊆
⋃
x
∈
A
B
13
2
8
11
12
vtoclgf
⊢
C
∈
A
→
C
∈
A
→
D
⊆
⋃
x
∈
A
B
14
13
pm2.43i
⊢
C
∈
A
→
D
⊆
⋃
x
∈
A
B