Metamath Proof Explorer


Theorem ssjo

Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion ssjo A A A =

Proof

Step Hyp Ref Expression
1 ocss A A
2 sshjval A A A A = A A
3 1 2 mpdan A A A = A A
4 ssun1 A A A
5 1 ancli A A A
6 unss A A A A
7 5 6 sylib A A A
8 occon A A A A A A A A A
9 7 8 mpdan A A A A A A A
10 4 9 mpi A A A A
11 ssun2 A A A
12 occon A A A A A A A A A
13 1 7 12 syl2anc A A A A A A A
14 11 13 mpi A A A A
15 10 14 ssind A A A A A
16 ocsh A A S
17 ocin A S A A = 0
18 16 17 syl A A A = 0
19 15 18 sseqtrd A A A 0
20 ocsh A A A A S
21 sh0le A A S 0 A A
22 7 20 21 3syl A 0 A A
23 19 22 eqssd A A A = 0
24 23 fveq2d A A A = 0
25 choc0 0 =
26 24 25 eqtrdi A A A =
27 3 26 eqtrd A A A =