Metamath Proof Explorer


Theorem ssltmul1

Description: One surreal set less-than relationship for cuts of A and B . (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses ssltmul1.1 φ L s R
ssltmul1.2 φ M s S
ssltmul1.3 φ A = L | s R
ssltmul1.4 φ B = M | s S
Assertion ssltmul1 Could not format assertion : No typesetting found for |- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <

Proof

Step Hyp Ref Expression
1 ssltmul1.1 φ L s R
2 ssltmul1.2 φ M s S
3 ssltmul1.3 φ A = L | s R
4 ssltmul1.4 φ B = M | s S
5 eqid Could not format ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) : No typesetting found for |- ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) with typecode |-
6 5 rnmpo Could not format ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } : No typesetting found for |- ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } with typecode |-
7 ssltex1 L s R L V
8 1 7 syl φ L V
9 ssltex1 M s S M V
10 2 9 syl φ M V
11 5 mpoexg Could not format ( ( L e. _V /\ M e. _V ) -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) : No typesetting found for |- ( ( L e. _V /\ M e. _V ) -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) with typecode |-
12 8 10 11 syl2anc Could not format ( ph -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) : No typesetting found for |- ( ph -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) with typecode |-
13 rnexg Could not format ( ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) : No typesetting found for |- ( ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) with typecode |-
14 12 13 syl Could not format ( ph -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) : No typesetting found for |- ( ph -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) with typecode |-
15 6 14 eqeltrrid Could not format ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } e. _V ) : No typesetting found for |- ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } e. _V ) with typecode |-
16 eqid Could not format ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) : No typesetting found for |- ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) with typecode |-
17 16 rnmpo Could not format ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } : No typesetting found for |- ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } with typecode |-
18 ssltex2 L s R R V
19 1 18 syl φ R V
20 ssltex2 M s S S V
21 2 20 syl φ S V
22 16 mpoexg Could not format ( ( R e. _V /\ S e. _V ) -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) : No typesetting found for |- ( ( R e. _V /\ S e. _V ) -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) with typecode |-
23 19 21 22 syl2anc Could not format ( ph -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) : No typesetting found for |- ( ph -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) with typecode |-
24 rnexg Could not format ( ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) : No typesetting found for |- ( ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) with typecode |-
25 23 24 syl Could not format ( ph -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) : No typesetting found for |- ( ph -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) with typecode |-
26 17 25 eqeltrrid Could not format ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } e. _V ) : No typesetting found for |- ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } e. _V ) with typecode |-
27 15 26 unexd Could not format ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V ) : No typesetting found for |- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V ) with typecode |-
28 snex Could not format { ( A x.s B ) } e. _V : No typesetting found for |- { ( A x.s B ) } e. _V with typecode |-
29 28 a1i Could not format ( ph -> { ( A x.s B ) } e. _V ) : No typesetting found for |- ( ph -> { ( A x.s B ) } e. _V ) with typecode |-
30 ssltss1 L s R L No
31 1 30 syl φ L No
32 31 adantr φ p L q M L No
33 simprl φ p L q M p L
34 32 33 sseldd φ p L q M p No
35 2 scutcld φ M | s S No
36 4 35 eqeltrd φ B No
37 36 adantr φ p L q M B No
38 34 37 mulscld Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s B ) e. No ) with typecode |-
39 1 scutcld φ L | s R No
40 3 39 eqeltrd φ A No
41 40 adantr φ p L q M A No
42 ssltss1 M s S M No
43 2 42 syl φ M No
44 43 adantr φ p L q M M No
45 simprr φ p L q M q M
46 44 45 sseldd φ p L q M q No
47 41 46 mulscld Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s q ) e. No ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s q ) e. No ) with typecode |-
48 38 47 addscld Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) +s ( A x.s q ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) +s ( A x.s q ) ) e. No ) with typecode |-
49 34 46 mulscld Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s q ) e. No ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s q ) e. No ) with typecode |-
50 48 49 subscld Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) with typecode |-
51 eleq1 Could not format ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( a e. No <-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) ) : No typesetting found for |- ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( a e. No <-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) ) with typecode |-
52 50 51 syl5ibrcom Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) with typecode |-
53 52 rexlimdvva Could not format ( ph -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) : No typesetting found for |- ( ph -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) with typecode |-
54 53 abssdv Could not format ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } C_ No ) : No typesetting found for |- ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } C_ No ) with typecode |-
55 ssltss2 L s R R No
56 1 55 syl φ R No
57 56 adantr φ r R s S R No
58 simprl φ r R s S r R
59 57 58 sseldd φ r R s S r No
60 36 adantr φ r R s S B No
61 59 60 mulscld Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s B ) e. No ) with typecode |-
62 40 adantr φ r R s S A No
63 ssltss2 M s S S No
64 2 63 syl φ S No
65 64 adantr φ r R s S S No
66 simprr φ r R s S s S
67 65 66 sseldd φ r R s S s No
68 62 67 mulscld Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s s ) e. No ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s s ) e. No ) with typecode |-
69 61 68 addscld Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) +s ( A x.s s ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) +s ( A x.s s ) ) e. No ) with typecode |-
70 59 67 mulscld Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s s ) e. No ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s s ) e. No ) with typecode |-
71 69 70 subscld Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) with typecode |-
72 eleq1 Could not format ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( b e. No <-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) ) : No typesetting found for |- ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( b e. No <-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) ) with typecode |-
73 71 72 syl5ibrcom Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) with typecode |-
74 73 rexlimdvva Could not format ( ph -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) : No typesetting found for |- ( ph -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) with typecode |-
75 74 abssdv Could not format ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } C_ No ) : No typesetting found for |- ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } C_ No ) with typecode |-
76 54 75 unssd Could not format ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) C_ No ) : No typesetting found for |- ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) C_ No ) with typecode |-
77 40 36 mulscld Could not format ( ph -> ( A x.s B ) e. No ) : No typesetting found for |- ( ph -> ( A x.s B ) e. No ) with typecode |-
78 77 snssd Could not format ( ph -> { ( A x.s B ) } C_ No ) : No typesetting found for |- ( ph -> { ( A x.s B ) } C_ No ) with typecode |-
79 elun Could not format ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) : No typesetting found for |- ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) with typecode |-
80 vex x V
81 eqeq1 Could not format ( a = x -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) : No typesetting found for |- ( a = x -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) with typecode |-
82 81 2rexbidv Could not format ( a = x -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) : No typesetting found for |- ( a = x -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) with typecode |-
83 80 82 elab Could not format ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) : No typesetting found for |- ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) with typecode |-
84 eqeq1 Could not format ( b = x -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) : No typesetting found for |- ( b = x -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) with typecode |-
85 84 2rexbidv Could not format ( b = x -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) : No typesetting found for |- ( b = x -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) with typecode |-
86 80 85 elab Could not format ( x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) : No typesetting found for |- ( x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) with typecode |-
87 83 86 orbi12i Could not format ( ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) : No typesetting found for |- ( ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) with typecode |-
88 79 87 bitri Could not format ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) : No typesetting found for |- ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) with typecode |-
89 38 47 49 addsubsd Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ) with typecode |-
90 scutcut L s R L | s R No L s L | s R L | s R s R
91 1 90 syl φ L | s R No L s L | s R L | s R s R
92 91 simp2d φ L s L | s R
93 92 adantr φ p L q M L s L | s R
94 ovex L | s R V
95 94 snid L | s R L | s R
96 3 95 eqeltrdi φ A L | s R
97 96 adantr φ p L q M A L | s R
98 93 33 97 ssltsepcd φ p L q M p < s A
99 scutcut M s S M | s S No M s M | s S M | s S s S
100 2 99 syl φ M | s S No M s M | s S M | s S s S
101 100 simp2d φ M s M | s S
102 101 adantr φ p L q M M s M | s S
103 ovex M | s S V
104 103 snid M | s S M | s S
105 4 104 eqeltrdi φ B M | s S
106 105 adantr φ p L q M B M | s S
107 102 45 106 ssltsepcd φ p L q M q < s B
108 34 41 46 37 98 107 sltmuld Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) ( ( p x.s B ) -s ( p x.s q ) )
109 38 49 subscld Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) e. No ) with typecode |-
110 77 adantr Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s B ) e. No ) with typecode |-
111 109 47 110 sltaddsubd Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ( ( p x.s B ) -s ( p x.s q ) ) ( ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ( ( p x.s B ) -s ( p x.s q ) )
112 108 111 mpbird Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) )
113 89 112 eqbrtrd Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) )
114 breq1 Could not format ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( x ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ( x ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) )
115 113 114 syl5ibrcom Could not format ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x
116 115 rexlimdvva Could not format ( ph -> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x
117 61 68 70 addsubsd Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ) with typecode |-
118 1 adantr φ r R s S L s R
119 118 90 syl φ r R s S L | s R No L s L | s R L | s R s R
120 119 simp3d φ r R s S L | s R s R
121 3 adantr φ r R s S A = L | s R
122 121 95 eqeltrdi φ r R s S A L | s R
123 120 122 58 ssltsepcd φ r R s S A < s r
124 2 adantr φ r R s S M s S
125 124 99 syl φ r R s S M | s S No M s M | s S M | s S s S
126 125 simp3d φ r R s S M | s S s S
127 4 adantr φ r R s S B = M | s S
128 127 104 eqeltrdi φ r R s S B M | s S
129 126 128 66 ssltsepcd φ r R s S B < s s
130 62 59 60 67 123 129 sltmuld Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s s ) -s ( A x.s B ) ) ( ( A x.s s ) -s ( A x.s B ) )
131 61 70 subscld Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( r x.s s ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( r x.s s ) ) e. No ) with typecode |-
132 77 adantr Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s B ) e. No ) with typecode |-
133 131 68 132 sltaddsubd Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( r x.s B ) -s ( r x.s s ) ) ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( r x.s B ) -s ( r x.s s ) )
134 61 70 132 68 sltsubsub2bd Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) ) ( ( ( r x.s B ) -s ( r x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) )
135 133 134 bitrd Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) ) ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( A x.s s ) -s ( A x.s B ) )
136 130 135 mpbird Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) )
137 117 136 eqbrtrd Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) )
138 breq1 Could not format ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( x ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ( x ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) )
139 137 138 syl5ibrcom Could not format ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x
140 139 rexlimdvva Could not format ( ph -> ( E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x ( E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x
141 116 140 jaod Could not format ( ph -> ( ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) -> x ( ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) -> x
142 88 141 biimtrid Could not format ( ph -> ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) -> x ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) -> x
143 142 imp Could not format ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> x x
144 velsn Could not format ( y e. { ( A x.s B ) } <-> y = ( A x.s B ) ) : No typesetting found for |- ( y e. { ( A x.s B ) } <-> y = ( A x.s B ) ) with typecode |-
145 breq2 Could not format ( y = ( A x.s B ) -> ( x x ( x x
146 144 145 sylbi Could not format ( y e. { ( A x.s B ) } -> ( x x ( x x
147 143 146 syl5ibrcom Could not format ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> ( y e. { ( A x.s B ) } -> x ( y e. { ( A x.s B ) } -> x
148 147 3impia Could not format ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. { ( A x.s B ) } ) -> x x
149 27 29 76 78 148 ssltd Could not format ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <