Step |
Hyp |
Ref |
Expression |
1 |
|
ssltmul2.1 |
|
2 |
|
ssltmul2.2 |
|
3 |
|
ssltmul2.3 |
|
4 |
|
ssltmul2.4 |
|
5 |
|
snex |
|
6 |
5
|
a1i |
|
7 |
|
eqid |
|
8 |
7
|
rnmpo |
|
9 |
|
ssltex1 |
|
10 |
1 9
|
syl |
|
11 |
|
ssltex2 |
|
12 |
2 11
|
syl |
|
13 |
7
|
mpoexg |
|
14 |
10 12 13
|
syl2anc |
|
15 |
|
rnexg |
|
16 |
14 15
|
syl |
|
17 |
8 16
|
eqeltrrid |
|
18 |
|
eqid |
|
19 |
18
|
rnmpo |
|
20 |
|
ssltex2 |
|
21 |
1 20
|
syl |
|
22 |
|
ssltex1 |
|
23 |
2 22
|
syl |
|
24 |
18
|
mpoexg |
|
25 |
21 23 24
|
syl2anc |
|
26 |
|
rnexg |
|
27 |
25 26
|
syl |
|
28 |
19 27
|
eqeltrrid |
|
29 |
17 28
|
unexd |
|
30 |
1
|
scutcld |
|
31 |
3 30
|
eqeltrd |
|
32 |
2
|
scutcld |
|
33 |
4 32
|
eqeltrd |
|
34 |
31 33
|
mulscld |
|
35 |
34
|
snssd |
|
36 |
|
ssltss1 |
|
37 |
1 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
|
simprl |
|
40 |
38 39
|
sseldd |
|
41 |
33
|
adantr |
|
42 |
40 41
|
mulscld |
|
43 |
31
|
adantr |
|
44 |
|
ssltss2 |
|
45 |
2 44
|
syl |
|
46 |
45
|
adantr |
|
47 |
|
simprr |
|
48 |
46 47
|
sseldd |
|
49 |
43 48
|
mulscld |
|
50 |
42 49
|
addscld |
|
51 |
40 48
|
mulscld |
|
52 |
50 51
|
subscld |
|
53 |
|
eleq1 |
|
54 |
52 53
|
syl5ibrcom |
|
55 |
54
|
rexlimdvva |
|
56 |
55
|
abssdv |
|
57 |
|
ssltss2 |
|
58 |
1 57
|
syl |
|
59 |
58
|
adantr |
|
60 |
|
simprl |
|
61 |
59 60
|
sseldd |
|
62 |
33
|
adantr |
|
63 |
61 62
|
mulscld |
|
64 |
31
|
adantr |
|
65 |
|
ssltss1 |
|
66 |
2 65
|
syl |
|
67 |
66
|
adantr |
|
68 |
|
simprr |
|
69 |
67 68
|
sseldd |
|
70 |
64 69
|
mulscld |
|
71 |
63 70
|
addscld |
|
72 |
61 69
|
mulscld |
|
73 |
71 72
|
subscld |
|
74 |
|
eleq1 |
|
75 |
73 74
|
syl5ibrcom |
|
76 |
75
|
rexlimdvva |
|
77 |
76
|
abssdv |
|
78 |
56 77
|
unssd |
|
79 |
|
elun |
|
80 |
|
vex |
|
81 |
|
eqeq1 |
|
82 |
81
|
2rexbidv |
|
83 |
80 82
|
elab |
|
84 |
|
eqeq1 |
|
85 |
84
|
2rexbidv |
|
86 |
80 85
|
elab |
|
87 |
83 86
|
orbi12i |
|
88 |
79 87
|
bitri |
|
89 |
|
scutcut |
|
90 |
1 89
|
syl |
|
91 |
90
|
simp2d |
|
92 |
91
|
adantr |
|
93 |
|
ovex |
|
94 |
93
|
snid |
|
95 |
3 94
|
eqeltrdi |
|
96 |
95
|
adantr |
|
97 |
92 39 96
|
ssltsepcd |
|
98 |
|
scutcut |
|
99 |
2 98
|
syl |
|
100 |
99
|
simp3d |
|
101 |
100
|
adantr |
|
102 |
|
ovex |
|
103 |
102
|
snid |
|
104 |
4 103
|
eqeltrdi |
|
105 |
104
|
adantr |
|
106 |
101 105 47
|
ssltsepcd |
|
107 |
40 43 41 48 97 106
|
sltmuld |
|
108 |
34
|
adantr |
|
109 |
51 42 49 108
|
sltsubsub2bd |
|
110 |
42 51
|
subscld |
|
111 |
108 49 110
|
sltsubaddd |
|
112 |
109 111
|
bitrd |
|
113 |
107 112
|
mpbid |
|
114 |
42 49 51
|
addsubsd |
|
115 |
113 114
|
breqtrrd |
|
116 |
|
breq2 |
|
117 |
115 116
|
syl5ibrcom |
|
118 |
117
|
rexlimdvva |
|
119 |
90
|
simp3d |
|
120 |
119
|
adantr |
|
121 |
95
|
adantr |
|
122 |
120 121 60
|
ssltsepcd |
|
123 |
99
|
simp2d |
|
124 |
123
|
adantr |
|
125 |
104
|
adantr |
|
126 |
124 68 125
|
ssltsepcd |
|
127 |
64 61 69 62 122 126
|
sltmuld |
|
128 |
34
|
adantr |
|
129 |
63 72
|
subscld |
|
130 |
128 70 129
|
sltsubaddd |
|
131 |
127 130
|
mpbid |
|
132 |
63 70 72
|
addsubsd |
|
133 |
131 132
|
breqtrrd |
|
134 |
|
breq2 |
|
135 |
133 134
|
syl5ibrcom |
|
136 |
135
|
rexlimdvva |
|
137 |
118 136
|
jaod |
|
138 |
88 137
|
biimtrid |
|
139 |
|
velsn |
|
140 |
|
breq1 |
|
141 |
140
|
imbi2d |
|
142 |
139 141
|
sylbi |
|
143 |
138 142
|
syl5ibrcom |
|
144 |
143
|
3imp |
|
145 |
6 29 35 78 144
|
ssltd |
|