Metamath Proof Explorer


Theorem ssltmul2

Description: One surreal set less-than relationship for cuts of A and B . (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses ssltmul2.1 φ L s R
ssltmul2.2 φ M s S
ssltmul2.3 φ A = L | s R
ssltmul2.4 φ B = M | s S
Assertion ssltmul2 Could not format assertion : No typesetting found for |- ( ph -> { ( A x.s B ) } <

Proof

Step Hyp Ref Expression
1 ssltmul2.1 φ L s R
2 ssltmul2.2 φ M s S
3 ssltmul2.3 φ A = L | s R
4 ssltmul2.4 φ B = M | s S
5 snex Could not format { ( A x.s B ) } e. _V : No typesetting found for |- { ( A x.s B ) } e. _V with typecode |-
6 5 a1i Could not format ( ph -> { ( A x.s B ) } e. _V ) : No typesetting found for |- ( ph -> { ( A x.s B ) } e. _V ) with typecode |-
7 eqid Could not format ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) : No typesetting found for |- ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) with typecode |-
8 7 rnmpo Could not format ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } : No typesetting found for |- ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } with typecode |-
9 ssltex1 L s R L V
10 1 9 syl φ L V
11 ssltex2 M s S S V
12 2 11 syl φ S V
13 7 mpoexg Could not format ( ( L e. _V /\ S e. _V ) -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) : No typesetting found for |- ( ( L e. _V /\ S e. _V ) -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) with typecode |-
14 10 12 13 syl2anc Could not format ( ph -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) : No typesetting found for |- ( ph -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) with typecode |-
15 rnexg Could not format ( ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) : No typesetting found for |- ( ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) with typecode |-
16 14 15 syl Could not format ( ph -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) : No typesetting found for |- ( ph -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) with typecode |-
17 8 16 eqeltrrid Could not format ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } e. _V ) : No typesetting found for |- ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } e. _V ) with typecode |-
18 eqid Could not format ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) : No typesetting found for |- ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) with typecode |-
19 18 rnmpo Could not format ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } : No typesetting found for |- ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } with typecode |-
20 ssltex2 L s R R V
21 1 20 syl φ R V
22 ssltex1 M s S M V
23 2 22 syl φ M V
24 18 mpoexg Could not format ( ( R e. _V /\ M e. _V ) -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) : No typesetting found for |- ( ( R e. _V /\ M e. _V ) -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) with typecode |-
25 21 23 24 syl2anc Could not format ( ph -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) : No typesetting found for |- ( ph -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) with typecode |-
26 rnexg Could not format ( ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) : No typesetting found for |- ( ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) with typecode |-
27 25 26 syl Could not format ( ph -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) : No typesetting found for |- ( ph -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) with typecode |-
28 19 27 eqeltrrid Could not format ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } e. _V ) : No typesetting found for |- ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } e. _V ) with typecode |-
29 17 28 unexd Could not format ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) e. _V ) : No typesetting found for |- ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) e. _V ) with typecode |-
30 1 scutcld φ L | s R No
31 3 30 eqeltrd φ A No
32 2 scutcld φ M | s S No
33 4 32 eqeltrd φ B No
34 31 33 mulscld Could not format ( ph -> ( A x.s B ) e. No ) : No typesetting found for |- ( ph -> ( A x.s B ) e. No ) with typecode |-
35 34 snssd Could not format ( ph -> { ( A x.s B ) } C_ No ) : No typesetting found for |- ( ph -> { ( A x.s B ) } C_ No ) with typecode |-
36 ssltss1 L s R L No
37 1 36 syl φ L No
38 37 adantr φ t L u S L No
39 simprl φ t L u S t L
40 38 39 sseldd φ t L u S t No
41 33 adantr φ t L u S B No
42 40 41 mulscld Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s B ) e. No ) with typecode |-
43 31 adantr φ t L u S A No
44 ssltss2 M s S S No
45 2 44 syl φ S No
46 45 adantr φ t L u S S No
47 simprr φ t L u S u S
48 46 47 sseldd φ t L u S u No
49 43 48 mulscld Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s u ) e. No ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s u ) e. No ) with typecode |-
50 42 49 addscld Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) +s ( A x.s u ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) +s ( A x.s u ) ) e. No ) with typecode |-
51 40 48 mulscld Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s u ) e. No ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s u ) e. No ) with typecode |-
52 50 51 subscld Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) with typecode |-
53 eleq1 Could not format ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( c e. No <-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) ) : No typesetting found for |- ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( c e. No <-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) ) with typecode |-
54 52 53 syl5ibrcom Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) with typecode |-
55 54 rexlimdvva Could not format ( ph -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) : No typesetting found for |- ( ph -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) with typecode |-
56 55 abssdv Could not format ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } C_ No ) : No typesetting found for |- ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } C_ No ) with typecode |-
57 ssltss2 L s R R No
58 1 57 syl φ R No
59 58 adantr φ v R w M R No
60 simprl φ v R w M v R
61 59 60 sseldd φ v R w M v No
62 33 adantr φ v R w M B No
63 61 62 mulscld Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s B ) e. No ) with typecode |-
64 31 adantr φ v R w M A No
65 ssltss1 M s S M No
66 2 65 syl φ M No
67 66 adantr φ v R w M M No
68 simprr φ v R w M w M
69 67 68 sseldd φ v R w M w No
70 64 69 mulscld Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s w ) e. No ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s w ) e. No ) with typecode |-
71 63 70 addscld Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) +s ( A x.s w ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) +s ( A x.s w ) ) e. No ) with typecode |-
72 61 69 mulscld Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s w ) e. No ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s w ) e. No ) with typecode |-
73 71 72 subscld Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) with typecode |-
74 eleq1 Could not format ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( d e. No <-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) ) : No typesetting found for |- ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( d e. No <-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) ) with typecode |-
75 73 74 syl5ibrcom Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) with typecode |-
76 75 rexlimdvva Could not format ( ph -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) : No typesetting found for |- ( ph -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) with typecode |-
77 76 abssdv Could not format ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } C_ No ) : No typesetting found for |- ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } C_ No ) with typecode |-
78 56 77 unssd Could not format ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) C_ No ) : No typesetting found for |- ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) C_ No ) with typecode |-
79 elun Could not format ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) : No typesetting found for |- ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) with typecode |-
80 vex y V
81 eqeq1 Could not format ( c = y -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) : No typesetting found for |- ( c = y -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) with typecode |-
82 81 2rexbidv Could not format ( c = y -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) : No typesetting found for |- ( c = y -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) with typecode |-
83 80 82 elab Could not format ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) : No typesetting found for |- ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) with typecode |-
84 eqeq1 Could not format ( d = y -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) : No typesetting found for |- ( d = y -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) with typecode |-
85 84 2rexbidv Could not format ( d = y -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) : No typesetting found for |- ( d = y -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) with typecode |-
86 80 85 elab Could not format ( y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) : No typesetting found for |- ( y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) with typecode |-
87 83 86 orbi12i Could not format ( ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) : No typesetting found for |- ( ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) with typecode |-
88 79 87 bitri Could not format ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) : No typesetting found for |- ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) with typecode |-
89 scutcut L s R L | s R No L s L | s R L | s R s R
90 1 89 syl φ L | s R No L s L | s R L | s R s R
91 90 simp2d φ L s L | s R
92 91 adantr φ t L u S L s L | s R
93 ovex L | s R V
94 93 snid L | s R L | s R
95 3 94 eqeltrdi φ A L | s R
96 95 adantr φ t L u S A L | s R
97 92 39 96 ssltsepcd φ t L u S t < s A
98 scutcut M s S M | s S No M s M | s S M | s S s S
99 2 98 syl φ M | s S No M s M | s S M | s S s S
100 99 simp3d φ M | s S s S
101 100 adantr φ t L u S M | s S s S
102 ovex M | s S V
103 102 snid M | s S M | s S
104 4 103 eqeltrdi φ B M | s S
105 104 adantr φ t L u S B M | s S
106 101 105 47 ssltsepcd φ t L u S B < s u
107 40 43 41 48 97 106 sltmuld Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s u ) -s ( t x.s B ) ) ( ( t x.s u ) -s ( t x.s B ) )
108 34 adantr Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) e. No ) with typecode |-
109 51 42 49 108 sltsubsub2bd Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s u ) -s ( t x.s B ) ) ( ( A x.s B ) -s ( A x.s u ) ) ( ( ( t x.s u ) -s ( t x.s B ) ) ( ( A x.s B ) -s ( A x.s u ) )
110 42 51 subscld Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) -s ( t x.s u ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) -s ( t x.s u ) ) e. No ) with typecode |-
111 108 49 110 sltsubaddd Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( A x.s B ) -s ( A x.s u ) ) ( A x.s B ) ( ( ( A x.s B ) -s ( A x.s u ) ) ( A x.s B )
112 109 111 bitrd Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s u ) -s ( t x.s B ) ) ( A x.s B ) ( ( ( t x.s u ) -s ( t x.s B ) ) ( A x.s B )
113 107 112 mpbid Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) ( A x.s B )
114 42 49 51 addsubsd Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) = ( ( ( t x.s B ) -s ( t x.s u ) ) +s ( A x.s u ) ) ) : No typesetting found for |- ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) = ( ( ( t x.s B ) -s ( t x.s u ) ) +s ( A x.s u ) ) ) with typecode |-
115 113 114 breqtrrd Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) ( A x.s B )
116 breq2 Could not format ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( A x.s B ) ( A x.s B ) ( ( A x.s B ) ( A x.s B )
117 115 116 syl5ibrcom Could not format ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B ) ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B )
118 117 rexlimdvva Could not format ( ph -> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B ) ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B )
119 90 simp3d φ L | s R s R
120 119 adantr φ v R w M L | s R s R
121 95 adantr φ v R w M A L | s R
122 120 121 60 ssltsepcd φ v R w M A < s v
123 99 simp2d φ M s M | s S
124 123 adantr φ v R w M M s M | s S
125 104 adantr φ v R w M B M | s S
126 124 68 125 ssltsepcd φ v R w M w < s B
127 64 61 69 62 122 126 sltmuld Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( A x.s B ) -s ( A x.s w ) ) ( ( A x.s B ) -s ( A x.s w ) )
128 34 adantr Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) e. No ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) e. No ) with typecode |-
129 63 72 subscld Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) -s ( v x.s w ) ) e. No ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) -s ( v x.s w ) ) e. No ) with typecode |-
130 128 70 129 sltsubaddd Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( A x.s B ) -s ( A x.s w ) ) ( A x.s B ) ( ( ( A x.s B ) -s ( A x.s w ) ) ( A x.s B )
131 127 130 mpbid Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) ( A x.s B )
132 63 70 72 addsubsd Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) : No typesetting found for |- ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) with typecode |-
133 131 132 breqtrrd Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) ( A x.s B )
134 breq2 Could not format ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( A x.s B ) ( A x.s B ) ( ( A x.s B ) ( A x.s B )
135 133 134 syl5ibrcom Could not format ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B ) ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B )
136 135 rexlimdvva Could not format ( ph -> ( E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B ) ( E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B )
137 118 136 jaod Could not format ( ph -> ( ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) -> ( A x.s B ) ( ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) -> ( A x.s B )
138 88 137 biimtrid Could not format ( ph -> ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B ) ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B )
139 velsn Could not format ( x e. { ( A x.s B ) } <-> x = ( A x.s B ) ) : No typesetting found for |- ( x e. { ( A x.s B ) } <-> x = ( A x.s B ) ) with typecode |-
140 breq1 Could not format ( x = ( A x.s B ) -> ( x ( A x.s B ) ( x ( A x.s B )
141 140 imbi2d Could not format ( x = ( A x.s B ) -> ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B ) ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B )
142 139 141 sylbi Could not format ( x e. { ( A x.s B ) } -> ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B ) ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B )
143 138 142 syl5ibrcom Could not format ( ph -> ( x e. { ( A x.s B ) } -> ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x ( x e. { ( A x.s B ) } -> ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x
144 143 3imp Could not format ( ( ph /\ x e. { ( A x.s B ) } /\ y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) -> x x
145 6 29 35 78 144 ssltd Could not format ( ph -> { ( A x.s B ) } < { ( A x.s B ) } <