Metamath Proof Explorer


Theorem ssltright

Description: A surreal is less than its right options. Theorem 0(i) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion ssltright Could not format assertion : No typesetting found for |- ( A e. No -> { A } <

Proof

Step Hyp Ref Expression
1 snex A V
2 1 a1i A No A V
3 fvexd Could not format ( A e. No -> ( _Right ` A ) e. _V ) : No typesetting found for |- ( A e. No -> ( _Right ` A ) e. _V ) with typecode |-
4 snssi A No A No
5 rightf Could not format _Right : No --> ~P No : No typesetting found for |- _Right : No --> ~P No with typecode |-
6 5 ffvelcdmi Could not format ( A e. No -> ( _Right ` A ) e. ~P No ) : No typesetting found for |- ( A e. No -> ( _Right ` A ) e. ~P No ) with typecode |-
7 6 elpwid Could not format ( A e. No -> ( _Right ` A ) C_ No ) : No typesetting found for |- ( A e. No -> ( _Right ` A ) C_ No ) with typecode |-
8 velsn x A x = A
9 rightval Could not format ( _Right ` A ) = { y e. ( _Old ` ( bday ` A ) ) | A
10 9 a1i Could not format ( A e. No -> ( _Right ` A ) = { y e. ( _Old ` ( bday ` A ) ) | A ( _Right ` A ) = { y e. ( _Old ` ( bday ` A ) ) | A
11 10 eleq2d Could not format ( A e. No -> ( y e. ( _Right ` A ) <-> y e. { y e. ( _Old ` ( bday ` A ) ) | A ( y e. ( _Right ` A ) <-> y e. { y e. ( _Old ` ( bday ` A ) ) | A
12 rabid y y Old bday A | A < s y y Old bday A A < s y
13 11 12 bitrdi Could not format ( A e. No -> ( y e. ( _Right ` A ) <-> ( y e. ( _Old ` ( bday ` A ) ) /\ A ( y e. ( _Right ` A ) <-> ( y e. ( _Old ` ( bday ` A ) ) /\ A
14 13 simplbda Could not format ( ( A e. No /\ y e. ( _Right ` A ) ) -> A A
15 breq1 x = A x < s y A < s y
16 14 15 imbitrrid Could not format ( x = A -> ( ( A e. No /\ y e. ( _Right ` A ) ) -> x ( ( A e. No /\ y e. ( _Right ` A ) ) -> x
17 16 expd Could not format ( x = A -> ( A e. No -> ( y e. ( _Right ` A ) -> x ( A e. No -> ( y e. ( _Right ` A ) -> x
18 8 17 sylbi Could not format ( x e. { A } -> ( A e. No -> ( y e. ( _Right ` A ) -> x ( A e. No -> ( y e. ( _Right ` A ) -> x
19 18 3imp21 Could not format ( ( A e. No /\ x e. { A } /\ y e. ( _Right ` A ) ) -> x x
20 2 3 4 7 19 ssltd Could not format ( A e. No -> { A } < { A } <