Metamath Proof Explorer


Theorem ssltsn

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses ssltsn.1 φ A No
ssltsn.2 φ B No
ssltsn.3 φ A < s B
Assertion ssltsn φ A s B

Proof

Step Hyp Ref Expression
1 ssltsn.1 φ A No
2 ssltsn.2 φ B No
3 ssltsn.3 φ A < s B
4 snex A V
5 4 a1i φ A V
6 snex B V
7 6 a1i φ B V
8 1 snssd φ A No
9 2 snssd φ B No
10 velsn x A x = A
11 velsn y B y = B
12 breq12 x = A y = B x < s y A < s B
13 10 11 12 syl2anb x A y B x < s y A < s B
14 3 13 syl5ibrcom φ x A y B x < s y
15 14 3impib φ x A y B x < s y
16 5 7 8 9 15 ssltd φ A s B