Database
SURREAL NUMBERS
Conway cut representation
Conway cuts
ssltsn
Next ⟩
ssltsepc
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssltsn
Description:
Surreal set less-than of two singletons.
(Contributed by
Scott Fenton
, 17-Mar-2025)
Ref
Expression
Hypotheses
ssltsn.1
⊢
φ
→
A
∈
No
ssltsn.2
⊢
φ
→
B
∈
No
ssltsn.3
⊢
φ
→
A
<
s
B
Assertion
ssltsn
⊢
φ
→
A
≪
s
B
Proof
Step
Hyp
Ref
Expression
1
ssltsn.1
⊢
φ
→
A
∈
No
2
ssltsn.2
⊢
φ
→
B
∈
No
3
ssltsn.3
⊢
φ
→
A
<
s
B
4
snex
⊢
A
∈
V
5
4
a1i
⊢
φ
→
A
∈
V
6
snex
⊢
B
∈
V
7
6
a1i
⊢
φ
→
B
∈
V
8
1
snssd
⊢
φ
→
A
⊆
No
9
2
snssd
⊢
φ
→
B
⊆
No
10
velsn
⊢
x
∈
A
↔
x
=
A
11
velsn
⊢
y
∈
B
↔
y
=
B
12
breq12
⊢
x
=
A
∧
y
=
B
→
x
<
s
y
↔
A
<
s
B
13
10
11
12
syl2anb
⊢
x
∈
A
∧
y
∈
B
→
x
<
s
y
↔
A
<
s
B
14
3
13
syl5ibrcom
⊢
φ
→
x
∈
A
∧
y
∈
B
→
x
<
s
y
15
14
3impib
⊢
φ
∧
x
∈
A
∧
y
∈
B
→
x
<
s
y
16
5
7
8
9
15
ssltd
⊢
φ
→
A
≪
s
B