Metamath Proof Explorer


Theorem ssmapsn

Description: A subset C of a set exponentiation to a singleton, is its projection D exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ssmapsn.f _ f D
ssmapsn.a φ A V
ssmapsn.c φ C B A
ssmapsn.d D = f C ran f
Assertion ssmapsn φ C = D A

Proof

Step Hyp Ref Expression
1 ssmapsn.f _ f D
2 ssmapsn.a φ A V
3 ssmapsn.c φ C B A
4 ssmapsn.d D = f C ran f
5 3 sselda φ f C f B A
6 elmapi f B A f : A B
7 5 6 syl φ f C f : A B
8 7 ffnd φ f C f Fn A
9 4 a1i φ D = f C ran f
10 ovexd φ B A V
11 10 3 ssexd φ C V
12 rnexg f C ran f V
13 12 rgen f C ran f V
14 13 a1i φ f C ran f V
15 11 14 jca φ C V f C ran f V
16 iunexg C V f C ran f V f C ran f V
17 15 16 syl φ f C ran f V
18 9 17 eqeltrd φ D V
19 18 adantr φ f C D V
20 ssiun2 f C ran f f C ran f
21 20 adantl φ f C ran f f C ran f
22 snidg A V A A
23 2 22 syl φ A A
24 23 adantr φ f C A A
25 fnfvelrn f Fn A A A f A ran f
26 8 24 25 syl2anc φ f C f A ran f
27 21 26 sseldd φ f C f A f C ran f
28 27 4 eleqtrrdi φ f C f A D
29 8 19 28 elmapsnd φ f C f D A
30 29 ex φ f C f D A
31 18 adantr φ f D A D V
32 snex A V
33 32 a1i φ f D A A V
34 simpr φ f D A f D A
35 23 adantr φ f D A A A
36 31 33 34 35 fvmap φ f D A f A D
37 4 idi D = f C ran f
38 rneq f = g ran f = ran g
39 38 cbviunv f C ran f = g C ran g
40 37 39 eqtri D = g C ran g
41 36 40 eleqtrdi φ f D A f A g C ran g
42 eliun f A g C ran g g C f A ran g
43 41 42 sylib φ f D A g C f A ran g
44 simp3 φ f D A g C f A ran g f A ran g
45 simp1l φ f D A g C f A ran g φ
46 45 2 syl φ f D A g C f A ran g A V
47 eqid A = A
48 simp1r φ f D A g C f A ran g f D A
49 elmapfn f D A f Fn A
50 48 49 syl φ f D A g C f A ran g f Fn A
51 3 sselda φ g C g B A
52 elmapfn g B A g Fn A
53 51 52 syl φ g C g Fn A
54 53 3adant3 φ g C f A ran g g Fn A
55 54 3adant1r φ f D A g C f A ran g g Fn A
56 46 47 50 55 fsneqrn φ f D A g C f A ran g f = g f A ran g
57 44 56 mpbird φ f D A g C f A ran g f = g
58 simp2 φ f D A g C f A ran g g C
59 57 58 eqeltrd φ f D A g C f A ran g f C
60 59 3exp φ f D A g C f A ran g f C
61 60 rexlimdv φ f D A g C f A ran g f C
62 43 61 mpd φ f D A f C
63 62 ex φ f D A f C
64 30 63 impbid φ f C f D A
65 64 alrimiv φ f f C f D A
66 nfcv _ f C
67 nfcv _ f 𝑚
68 nfcv _ f A
69 1 67 68 nfov _ f D A
70 66 69 cleqf C = D A f f C f D A
71 65 70 sylibr φ C = D A