Metamath Proof Explorer


Theorem ssmd1

Description: Ordering implies the modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssmd1 A C B C A B A 𝑀 B

Proof

Step Hyp Ref Expression
1 inss1 x A B x A
2 dfss A B A = A B
3 2 biimpi A B A = A B
4 3 oveq2d A B x A = x A B
5 1 4 sseqtrid A B x A B x A B
6 5 a1d A B x B x A B x A B
7 6 ralrimivw A B x C x B x A B x A B
8 mdbr2 A C B C A 𝑀 B x C x B x A B x A B
9 7 8 syl5ibr A C B C A B A 𝑀 B
10 9 3impia A C B C A B A 𝑀 B