Metamath Proof Explorer


Theorem ssmd2

Description: Ordering implies the modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssmd2 A C B C A B B 𝑀 A

Proof

Step Hyp Ref Expression
1 inss2 x B A A
2 chub2 A C x C A x A
3 1 2 sstrid A C x C x B A x A
4 3 adantrl A C A B x C x B A x A
5 simpl A B x C A B
6 sseqin2 A B B A = A
7 5 6 sylib A B x C B A = A
8 7 adantl A C A B x C B A = A
9 8 oveq2d A C A B x C x B A = x A
10 4 9 sseqtrrd A C A B x C x B A x B A
11 10 a1d A C A B x C x A x B A x B A
12 11 exp32 A C A B x C x A x B A x B A
13 12 ralrimdv A C A B x C x A x B A x B A
14 13 adantr A C B C A B x C x A x B A x B A
15 mdbr2 B C A C B 𝑀 A x C x A x B A x B A
16 15 ancoms A C B C B 𝑀 A x C x A x B A x B A
17 14 16 sylibrd A C B C A B B 𝑀 A
18 17 3impia A C B C A B B 𝑀 A