Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
ssn0
Next ⟩
0dif
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssn0
Description:
A class with a nonempty subclass is nonempty.
(Contributed by
NM
, 17-Feb-2007)
Ref
Expression
Assertion
ssn0
⊢
A
⊆
B
∧
A
≠
∅
→
B
≠
∅
Proof
Step
Hyp
Ref
Expression
1
sseq0
⊢
A
⊆
B
∧
B
=
∅
→
A
=
∅
2
1
ex
⊢
A
⊆
B
→
B
=
∅
→
A
=
∅
3
2
necon3d
⊢
A
⊆
B
→
A
≠
∅
→
B
≠
∅
4
3
imp
⊢
A
⊆
B
∧
A
≠
∅
→
B
≠
∅