Metamath Proof Explorer


Theorem ssnei2

Description: Any subset M of X containing a neighborhood N of a set S is a neighborhood of this set. Generalization to subsets of Property V_i of BourbakiTop1 p. I.3. (Contributed by FL, 2-Oct-2006)

Ref Expression
Hypothesis neips.1 X = J
Assertion ssnei2 J Top N nei J S N M M X M nei J S

Proof

Step Hyp Ref Expression
1 neips.1 X = J
2 simprr J Top N nei J S N M M X M X
3 neii2 J Top N nei J S g J S g g N
4 sstr2 g N N M g M
5 4 com12 N M g N g M
6 5 anim2d N M S g g N S g g M
7 6 reximdv N M g J S g g N g J S g g M
8 3 7 mpan9 J Top N nei J S N M g J S g g M
9 8 adantrr J Top N nei J S N M M X g J S g g M
10 1 neiss2 J Top N nei J S S X
11 1 isnei J Top S X M nei J S M X g J S g g M
12 10 11 syldan J Top N nei J S M nei J S M X g J S g g M
13 12 adantr J Top N nei J S N M M X M nei J S M X g J S g g M
14 2 9 13 mpbir2and J Top N nei J S N M M X M nei J S