Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ssnelpss
Next ⟩
ssnelpssd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssnelpss
Description:
A subclass missing a member is a proper subclass.
(Contributed by
NM
, 12-Jan-2002)
Ref
Expression
Assertion
ssnelpss
⊢
A
⊆
B
→
C
∈
B
∧
¬
C
∈
A
→
A
⊂
B
Proof
Step
Hyp
Ref
Expression
1
nelneq2
⊢
C
∈
B
∧
¬
C
∈
A
→
¬
B
=
A
2
eqcom
⊢
B
=
A
↔
A
=
B
3
1
2
sylnib
⊢
C
∈
B
∧
¬
C
∈
A
→
¬
A
=
B
4
dfpss2
⊢
A
⊂
B
↔
A
⊆
B
∧
¬
A
=
B
5
4
baibr
⊢
A
⊆
B
→
¬
A
=
B
↔
A
⊂
B
6
3
5
syl5ib
⊢
A
⊆
B
→
C
∈
B
∧
¬
C
∈
A
→
A
⊂
B