Metamath Proof Explorer


Theorem ssnelpssd

Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssnelpssd.1 φ A B
ssnelpssd.2 φ C B
ssnelpssd.3 φ ¬ C A
Assertion ssnelpssd φ A B

Proof

Step Hyp Ref Expression
1 ssnelpssd.1 φ A B
2 ssnelpssd.2 φ C B
3 ssnelpssd.3 φ ¬ C A
4 ssnelpss A B C B ¬ C A A B
5 1 4 syl φ C B ¬ C A A B
6 2 3 5 mp2and φ A B