Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ssnelpssd
Metamath Proof Explorer
Description: Subclass inclusion with one element of the superclass missing is proper
subclass inclusion. Deduction form of ssnelpss . (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
ssnelpssd.1
⊢ φ → A ⊆ B
ssnelpssd.2
⊢ φ → C ∈ B
ssnelpssd.3
⊢ φ → ¬ C ∈ A
Assertion
ssnelpssd
⊢ φ → A ⊂ B
Proof
Step
Hyp
Ref
Expression
1
ssnelpssd.1
⊢ φ → A ⊆ B
2
ssnelpssd.2
⊢ φ → C ∈ B
3
ssnelpssd.3
⊢ φ → ¬ C ∈ A
4
ssnelpss
⊢ A ⊆ B → C ∈ B ∧ ¬ C ∈ A → A ⊂ B
5
1 4
syl
⊢ φ → C ∈ B ∧ ¬ C ∈ A → A ⊂ B
6
2 3 5
mp2and
⊢ φ → A ⊂ B