| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnmz.1 |
|
| 2 |
|
nmzsubg.2 |
|
| 3 |
|
nmzsubg.3 |
|
| 4 |
2
|
subgss |
|
| 5 |
4
|
sselda |
|
| 6 |
|
simpll |
|
| 7 |
|
subgrcl |
|
| 8 |
6 7
|
syl |
|
| 9 |
6 4
|
syl |
|
| 10 |
|
simplrl |
|
| 11 |
9 10
|
sseldd |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
2 3 12 13
|
grplinv |
|
| 15 |
8 11 14
|
syl2anc |
|
| 16 |
15
|
oveq1d |
|
| 17 |
13
|
subginvcl |
|
| 18 |
6 10 17
|
syl2anc |
|
| 19 |
9 18
|
sseldd |
|
| 20 |
|
simplrr |
|
| 21 |
2 3
|
grpass |
|
| 22 |
8 19 11 20 21
|
syl13anc |
|
| 23 |
2 3 12
|
grplid |
|
| 24 |
8 20 23
|
syl2anc |
|
| 25 |
16 22 24
|
3eqtr3d |
|
| 26 |
|
simpr |
|
| 27 |
3
|
subgcl |
|
| 28 |
6 18 26 27
|
syl3anc |
|
| 29 |
25 28
|
eqeltrrd |
|
| 30 |
3
|
subgcl |
|
| 31 |
6 29 10 30
|
syl3anc |
|
| 32 |
|
simpll |
|
| 33 |
|
simplrl |
|
| 34 |
32 7
|
syl |
|
| 35 |
|
simplrr |
|
| 36 |
32 33 5
|
syl2anc |
|
| 37 |
|
eqid |
|
| 38 |
2 3 37
|
grppncan |
|
| 39 |
34 35 36 38
|
syl3anc |
|
| 40 |
|
simpr |
|
| 41 |
37
|
subgsubcl |
|
| 42 |
32 40 33 41
|
syl3anc |
|
| 43 |
39 42
|
eqeltrrd |
|
| 44 |
3
|
subgcl |
|
| 45 |
32 33 43 44
|
syl3anc |
|
| 46 |
31 45
|
impbida |
|
| 47 |
46
|
anassrs |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
1
|
elnmz |
|
| 50 |
5 48 49
|
sylanbrc |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
ssrdv |
|