Metamath Proof Explorer


Theorem ssnnfi

Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998) (Proof shortened by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion ssnnfi A ω B A B Fin

Proof

Step Hyp Ref Expression
1 sspss B A B A B = A
2 pssnn A ω B A x A B x
3 elnn x A A ω x ω
4 3 expcom A ω x A x ω
5 4 anim1d A ω x A B x x ω B x
6 5 reximdv2 A ω x A B x x ω B x
7 6 adantr A ω B A x A B x x ω B x
8 2 7 mpd A ω B A x ω B x
9 isfi B Fin x ω B x
10 8 9 sylibr A ω B A B Fin
11 eleq1 B = A B ω A ω
12 11 biimparc A ω B = A B ω
13 nnfi B ω B Fin
14 12 13 syl A ω B = A B Fin
15 10 14 jaodan A ω B A B = A B Fin
16 1 15 sylan2b A ω B A B Fin