Metamath Proof Explorer


Theorem ssntr

Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ssntr J Top S X O J O S O int J S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 elin O J 𝒫 S O J O 𝒫 S
3 elpwg O J O 𝒫 S O S
4 3 pm5.32i O J O 𝒫 S O J O S
5 2 4 bitr2i O J O S O J 𝒫 S
6 elssuni O J 𝒫 S O J 𝒫 S
7 5 6 sylbi O J O S O J 𝒫 S
8 7 adantl J Top S X O J O S O J 𝒫 S
9 1 ntrval J Top S X int J S = J 𝒫 S
10 9 adantr J Top S X O J O S int J S = J 𝒫 S
11 8 10 sseqtrrd J Top S X O J O S O int J S