Metamath Proof Explorer


Theorem ssoprab2

Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 . (Contributed by FL, 6-Nov-2013) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion ssoprab2 xyzφψxyz|φxyz|ψ

Proof

Step Hyp Ref Expression
1 id φψφψ
2 1 anim2d φψw=xyzφw=xyzψ
3 2 aleximi zφψzw=xyzφzw=xyzψ
4 3 aleximi yzφψyzw=xyzφyzw=xyzψ
5 4 aleximi xyzφψxyzw=xyzφxyzw=xyzψ
6 5 ss2abdv xyzφψw|xyzw=xyzφw|xyzw=xyzψ
7 df-oprab xyz|φ=w|xyzw=xyzφ
8 df-oprab xyz|ψ=w|xyzw=xyzψ
9 6 7 8 3sstr4g xyzφψxyz|φxyz|ψ