Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 . (Contributed by FL, 6-Nov-2013) (Proof shortened by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | ssoprab2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | 1 | anim2d | |
3 | 2 | aleximi | |
4 | 3 | aleximi | |
5 | 4 | aleximi | |
6 | 5 | ss2abdv | |
7 | df-oprab | |
|
8 | df-oprab | |
|
9 | 6 7 8 | 3sstr4g | |