Metamath Proof Explorer


Theorem ssoprab2i

Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypothesis ssoprab2i.1 φ ψ
Assertion ssoprab2i x y z | φ x y z | ψ

Proof

Step Hyp Ref Expression
1 ssoprab2i.1 φ ψ
2 1 anim2i w = x y φ w = x y ψ
3 2 2eximi x y w = x y φ x y w = x y ψ
4 3 ssopab2i w z | x y w = x y φ w z | x y w = x y ψ
5 dfoprab2 x y z | φ = w z | x y w = x y φ
6 dfoprab2 x y z | ψ = w z | x y w = x y ψ
7 4 5 6 3sstr4i x y z | φ x y z | ψ