Metamath Proof Explorer


Theorem ssorduni

Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of TakeutiZaring p. 40. (Contributed by NM, 30-May-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ssorduni A On Ord A

Proof

Step Hyp Ref Expression
1 eluni2 x A y A x y
2 ssel A On y A y On
3 onelss y On x y x y
4 2 3 syl6 A On y A x y x y
5 anc2r y A x y x y y A x y x y y A
6 4 5 syl A On y A x y x y y A
7 ssuni x y y A x A
8 6 7 syl8 A On y A x y x A
9 8 rexlimdv A On y A x y x A
10 1 9 syl5bi A On x A x A
11 10 ralrimiv A On x A x A
12 dftr3 Tr A x A x A
13 11 12 sylibr A On Tr A
14 onelon y On x y x On
15 14 ex y On x y x On
16 2 15 syl6 A On y A x y x On
17 16 rexlimdv A On y A x y x On
18 1 17 syl5bi A On x A x On
19 18 ssrdv A On A On
20 ordon Ord On
21 trssord Tr A A On Ord On Ord A
22 21 3exp Tr A A On Ord On Ord A
23 20 22 mpii Tr A A On Ord A
24 13 19 23 sylc A On Ord A